
User’s manual for the FMUs
This brief document contains a description on how the various components of the simulation
operate and how their behavior is altered by values given to their parameters. The underlined names
represent the parameters, monospaced text represents either MATLAB source code, parameters’
names or mathematical formulae.

1 The Leader
The behavior of the leader is modeled by the “Leadcar” FMU. It has been programmed in
MATLAB using the Simulink package and the Vehicle Dynamics Blockset. It’s mainly composed by
three logical units

1. The acceleration controller, that uses the FMU’s parameters to generate an acceleration
signal – the desired acceleration – used to control the car

2. The vehicle body, implemented with the aforementioned blockset

3. The attack function, that’s used to simulate an attack on the vehicle’s sensors

The Leadcar is modeled as show in Figure 5. First the desired acceleration is passed through the
vehicle body that generates, for each simulation step, the car’s position using the bicycle model;
finally the car’s velocity and position outputed by the vehicle body are sent as output to the rest of
the simulation. If an attack function is enabled, the aforementioned values are altered to simulate an
attack on the car’s sensors.

Name Type Unit of
measurement

Description

initial_position PARAMETER meters Initial position. It’s always 0

initial_velocity PARAMETER m/s Initial velocity. It’s always 0

acceleration_value PARAMETER m/s² See below

deceleration_value PARAMETER m/s² See below

frequency PARAMETER rad/s See below

low_frequency PARAMETER Hz See below

high_frequency PARAMETER Hz See below

operational_mode PARAMETER See below

amplitude PARAMETER m/s³ See below

attack PARAMETER See below

attack_amplitude PARAMETER m/s³ See below

attack_time PARAMETER s See below

offset PARAMETER m/s² See below

phase PARAMETER 1/s See below

slope PARAMETER m/s³ See below

sprint_period PARAMETER

position_x OUTPUT m Car’s sensor

speed OUTPUT m/s Car’s sensor

acceleration OUTPUT m/s² Car’s sensor

position_y OUTPUT m Always 0

real_x OUTPUT m Real car’s position, unmodified
by any attack on the sensors

real_v OUTPUT m/s As real_x but for the speed

real_a OUTPUT m/s² As real_x but for the acc.

attacked OUTPUT bool NOT USED

time INPUT s Simulator’s clock

Acceleration controller
The generated output signal a(t) is shaped by certain FMU’s parameters.

Let us define the following functions:

• fun1(t) = amplitude*sin(frequency * t + phase) + offset

• fun2(t) = slope*t

• final_steps(t) = 0.03*sin(1.5 * t) + 0.005

Note how the frequency parameter is expressed in rad/s instead of Hertz. The final steps function
is a «[s]ine function with very low
amplitude and high frequency, to model
the fact that in a real scenario it’s not
possible to obtain a constant speed, thus
the acceleration is almost never set to 0
constantly» (Deliverable D2.1, pg 9)

The parameter operational_mode can
be defined as 0, 1 or 2.

In operational mode 0, the leader
accelerates at constant acceleration
acceleration_value for the first 10
seconds of the simulations then follows
fun1(t).

In operational mode 1, the leader accelerates following fun2(t) for the first 8 seconds then
switches to fun1(t).

In operational mode 2, let us call T = sprint_period + 30, the leader accelerates and
decelerates following a periodic function of period T defined as:

Figura 1: Acceleration function in mode 0

a(t) = acceleration_value if t % T < sprint_period
final_steps(t) if sprint_period <= t % T < 30
deceleration_value if t % T < 30 + sprint_period

Note how the signs of the acceleration and deceleration values must be opposite to each other,
otherwise the velocity will diverge to infinity. Note also that it is wise to never set sprint_period
>= 30.

Attack function
The attack function, when enabled, adds a spurious signal on top of the sensors’ signal – that are
just the outputs of the vehicle dynamics block, – resulting in erroneous or noisy values being
communicated. The type of the attack is specified by the attack parameter and can be defined as
0, 1, 2 or 3. The attack begins when attack_time > t and continues for the rest of the simulation.

Let us define the following acceleration functions:

• low_freq_sine(t) = attack_amplitude*sin(low_frequency * (2*π) * t)

• high_freq_sine(t) = attack_amplitude*sin(high_frequency * (2*π) * t)

These accelerations are then added to the acceleration, velocity and position in a coherent way.

• In attack mode 0, no attack takes place.

• In attack mode 1, the low frequency sine is added.

• In attack mode 2, the high frequency sine is added.

• In attack mode 3, both functions are added.

Nota bene: the default value for attack is 1, so if its value is not explicitly set in your config file,
the attack will take place.

Figura 3: Acceleration in mode 1

Figura 2: Acceleration in mode 2

2 The follower car
The behavior of the follower cars is modeled by the “SimpleCar” FMU. It has been programmed in
MATLAB using the Simulink package and the Vehicle Dynamics Blockset. It’s mainly composed by
three logical units.

1. The attack function on the actuator, it alters the value of the desired acceleration
computed by the cruise control

2. The vehicle body, implemented with the aforementioned blockset

3. The attack function on the sensors, it works the same as the leader’s

The follower car is modeled as shown in Figure 6.

Name Type Unit of
measurement

Description

desired_acceleration INPUT m/s² Target acceleration

position_x OUTPUT m Car’s sensor

speed OUTPUT m/s Car’s sensor

acceleration OUTPUT m/s² Car’s sensor

position_y OUTPUT m It’s always 0

real_x OUTPUT m Real car’s position, unmodified
by any attack on the sensors

real_v OUTPUT m/s As real_x but for the speed

real_a OUTPUT m/s² As real_x but for the acc.

attacked OUTPUT bool Not used

time INPUT s Simulator’s clock

attack PARAMETER See below

attack_amplitude PARAMETER m/s³ See below

attack_time PARAMETER S See below

high_frequency PARAMETER Hz See below

initial_position PARAMETER m Starting position 0

initial_velocity PARAMETER m/s Starting velocity 0

low_frequency PARAMETER Hz See below

vehicle_starting_time PARAMETER s Start time

Attack function
The attack function, when enabled, adds a spurious signal on top of the sensors’ signal, resulting in
erroneous or noisy values being communicated. The type of the attack is specified by the attack
parameter and can be defined as 0, 1, 2, 3, 4 or 5. The attack begins when attack_time > t and

continues for the rest of the simulation. The attacks 0, 1, 2 and 3 operate on the sensors and operate
the same way as the leader’s, refer to Section 1.

• In attack mode 4 the acceleration value is altered as follows: a_(t) = a(t) * (1 +
attack_amplitude), that is the car’s acceleration is amplified by a certain factor

• In attack mode 5 the acceleration value is altered as follow: a_(t) = a(t) +
attack_amplitude, that is the car’s acceleration is slightly increased or decreased

Nota bene: the default value for attack is 1, so if its value is not explicitly set in your config file,
the attack will take place.

Vehicle body
As for the leader, the physics of the vehicle are handled by the Vehicle Dynamics block; however
the parameter vehicle_starting_time keeps the a_(t) = 0 until vehicle_starting_time
< t.

3 Platoon MEC
This FMU models the network and the CACC system. MEC stands for Multi-access Edge
Computing. The following table describes the FMU’s variables, the for brevity’s sake all the cars’
variables have been shorten with a variable i that varies from 0 to 9, where 0 represent the leader,
the remaining the follower cars.

Name Type Unit of
measurement

Description

platoon_size PARAMETER Self explanatory

network_uplink_delay PARAMETER ms Distribution of the uplink
delay channel. This figure
represents the average

network_downlink_delay PARAMETER ms Distribution of the downlink
delay channel. This figure
represents the average

platoon_distance_strategy PARAMETER m The distance to keep between
vehicles

cacc_target_distance INPUT m CACC controller target
distance. NOT USED

platoon_0_i_length PARAMETER m Vehicle i's length

platoon_0_i_pos_x INPUT m Vehicle i's X position

platoon_0_i_pos_y INPUT m Vehicle i's Y position (0)

platoon_0_i_speed INPUT m/s Vehicle i's speed

platoon_0_i_acceleration INPUT m/s² Vehicle i's linear acceleration

platoon_0_i_des_acc OUTPUT m/s² Desired acceleration for i.
Unused for i = 0

The CACC’s desired accelerations for the platoon’s vehicles are computed by the following
procedure:

def compute_follower_acceleration_decoration(self, target_distance, *vehicles_data):
current_vehicle, front_vehicle, platoon_leader_vehicle = vehicles_data
xi = 1
w_n = 0.2 # 2 Hz
alpha_1 = 1 - self.C1
alpha_2 = self.C1
c1_xi = self.C1 * (self.xi + math.sqrt(math.pow(self.xi, 2) - 1))
alpha_3 = - (2 * self.xi - c1_xi) * self.w_n
alpha_4 = - c1_xi * self.w_n
alpha_5 = - math.pow(self.w_n, 2)

if self.current_vehicle.front_vehicle_distance is None:
[...]

else:
follower_front_vehicle_distance = current_vehicle.front_vehicle_distance

eps_space = - follower_front_vehicle_distance + target_distance
eps_speed = current_vehicle.speed - front_vehicle.speed

desired_acc = alpha_1 * front_vehicle.acceleration
desired_acc += alpha_2 * platoon_leader_vehicle.acceleration
desired_acc += alpha_3 * eps_speed
desired_acc += alpha_5 * eps_space
desired_acc += alpha_4 * (current_vehicle.speed - platoon_leader_vehicle.speed)

desired_acc = max(-current_vehicle.max_deceleration,
min(current_vehicle.max_acceleration, desired_acc))

return desired_acc, cs.DEFAULT_PLATOON_MANEUVER_TIME

4 The simulations and their parameters
Figura 4 shows how the various elements of the simulation are linked togheter.

Ogni cartella contiene una serie di cartelle il cui nome rappresenta i valori scelti per ciascun
parametro che definisce la simulazione. I parametri di interesse sono descritti sotto.

Ogni cartella è relativa a una tipologia di macro scenario, in particolare abbiamo:

 • No attack: simulazioni del sistema nel caso nominale.

 • Attack leader: vengono simulati gli attacchi ai sensori del leader.

 • Attack middle: diviso in parte 1 e 2, rappresentano rispettivamente gli attacchi ai sensori (1,2 e
3) e all’attuatore (4 e 5) del veicolo numero 4 (il quinto del platoon).

 • Attack first: come sopra, ma relativi al veicolo 1, ovvero il secondo nel platoon, quello subito
dietro al leader.

I valori nello specifico come già detto si possono trovare nella cartella, che conterrà anche il file
results.csv, contenente i dati di simulazione.

For each batch of simulations, an index.html file is provided, it provides a table with the
parameters used for each simulation and links to the folder, the results and config files; you can
open said HTML file in your web browser.

The generated CSV stores the following parameters:

1. Leader
 Leader.position_x
 Leader.speed
 Leader.acceleration
 Leader.position_y It should be 0

2. CarX (veicoli da Car1 a Car9)
 For each vehicle Car1, Car2, ..., Car9

o CarX.position_x
o CarX.speed
o CarX.acceleration
o CarX.position_y It should be 0

3. Network (platoon acc)
 Network.platoon_0_X_des_acc Each of these is the value that the CACC algorithm in

the edge decided for each vehicle

Figura 4: Topology of the simulation

Leader
(LeadCar.fmu)

Network
(MEC.fmu)

acceleration, position_x, position_y, speed

Car1
(SimpleCar_attacked.fmu)

desired_acceleration

Car2
(SimpleCar_attacked.fmu)

desired_acceleration

Car3
(SimpleCar_attacked.fmu)

desired_acceleration

Car4
(SimpleCar_attacked.fmu)

desired_acceleration

Car5
(SimpleCar_attacked.fmu)

desired_acceleration

Car6
(SimpleCar_attacked.fmu)

desired_acceleration

Car7
(SimpleCar_attacked.fmu)

desired_acceleration

Car8
(SimpleCar_attacked.fmu)

desired_acceleration

Car9
(SimpleCar_attacked.fmu)

desired_acceleration

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

acceleration, position_x, position_y, speed

The following table reports how the various parameters are set for each batch of simulations. The Cartesian product is performed when multiple lists of parameters are
given. The table has been generated from the various dse.json files, each batch folder has one and, once merged with the mm.json file located in the multi-models’
folder, represent the configuration used to run the batch.

All cars start in position 0, each car waits 4 seconds for the car in front to start moving, so the first car will start moving after 4 seconds from the simulation start, the
second after 8 and so on…

Parameter Attack First p.1 Attack First p.2 Attack Leader Attack Middle p.1 Attack Middle p.2 No Attack
{Car1}.CarInstance_1.attack 1, 2, 3 4, 5 0 0 0 0
{Car1}.CarInstance_1.attack_amplitude 0.08 0.08
{Car1}.CarInstance_1.attack_time 30 30
{Car1}.CarInstance_1.high_frequency 172 172
{Car1}.CarInstance_1.low_frequency 0.1 0.1
{Car1}.CarInstance_1.vehicle_starting_time 4 4 4
{Car2}.CarInstance_2.attack 0 0 0 0 0 0
{Car3}.CarInstance_3.attack 0 0 0 0 0 0
{Car4}.CarInstance_4.attack 0 0 0 1, 2, 3 4, 5 0
{Car4}.CarInstance_4.attack_amplitude 0.08 0.08, -0.08
{Car4}.CarInstance_4.attack_time 30 30
{Car4}.CarInstance_4.high_frequency 172 172 172 172 172
{Car4}.CarInstance_4.low_frequency 0.1 0.1 0.1 0.1 0.1
{Car4}.CarInstance_4.vehicle_starting_time 16 16 16 16 16 16
{Car5}.CarInstance_5.attack 0 0 0 0 0 0
{Car6}.CarInstance_6.attack 0 0 0 0 0 0
{Car7}.CarInstance_7.attack 0 0 0 0 0 0
{Car8}.CarInstance_8.attack 0 0 0 0 0 0
{Car9}.CarInstance_9.attack 0 0 0 0 0 0
{Leader}.LeaderInstance.acceleration_value 1.7, 2 1.7, 2 1.7, 2 1.7, 2 1.7, 2 1.7, 2
{Leader}.LeaderInstance.amplitude 0.8 0.8 0.8 0.8 0.8 0.8
{Leader}.LeaderInstance.attack 0 0 1, 2, 3 0 0 0
{Leader}.LeaderInstance.attack_amplitude 0.08, 1
{Leader}.LeaderInstance.attack_time 30
{Leader}.LeaderInstance.deceleration_value-1.5, -1.7 -1.5, -1.7 -1.5, -1.7 -1.5, -1.7 -1.5, -1.7 -1.5, -1.7
{Leader}.LeaderInstance.frequency 0.628, 0.5 0.628, 0.5 0.628, 0.5 0.628, 0.5 0.628, 0.5 0.628, 0.5
{Leader}.LeaderInstance.high_frequency 172
{Leader}.LeaderInstance.initial_position 0 0 0 0 0 0
{Leader}.LeaderInstance.initial_velocity 0 0 0 0 0 0
{Leader}.LeaderInstance.low_frequency 0.1

Parameter Attack First p.1 Attack First p.2 Attack Leader Attack Middle p.1 Attack Middle p.2 No Attack
{Leader}.LeaderInstance.offset -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
{Leader}.LeaderInstance.operational_mode 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2
{Leader}.LeaderInstance.phase 0 0 0 0 0 0
{Leader}.LeaderInstance.slope 0.5 0.5 0.5 0.5 0.5 0.5
{Leader}.LeaderInstance.sprint_period 5 5 5 5 5 5
{Network}...network_downlink_delay 3, 5 3, 5 3, 5 3, 5 3, 5 3, 5
{Network}...network_uplink_delay 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10
{Network}...platoon_0_0_length 4 4 4 4 4 4
{Network}...platoon_0_1_length 4 4 4 4 4 4
{Network}...platoon_0_2_length 4 4 4 4 4 4
{Network}...platoon_0_3_length 4 4 4 4 4 4
{Network}...platoon_0_4_length 4 4 4 4 4 4
{Network}...platoon_0_5_length 4 4 4 4 4 4
{Network}...platoon_0_6_length 4 4 4 4 4 4
{Network}...platoon_0_7_length 4 4 4 4 4 4
{Network}...platoon_0_8_length 4 4 4 4 4 4
{Network}...platoon_0_9_length 4 4 4 4 4 4
{Network}...platoon_size 10 10 10 10 10 10
{Car1}.CarInstance_1.initial_position 0 0 0 0 0 0
{Car1}.CarInstance_1.initial_velocity 0 0 0 0 0 0
{Car1}.CarInstance_1.vehicle_starting_time 4 4 4 4 4 4
{Car2}.CarInstance_2.initial_position 0 0 0 0 0 0
{Car2}.CarInstance_2.initial_velocity 0 0 0 0 0 0
{Car2}.CarInstance_2.vehicle_starting_time 8 8 8 8 8 8
{Car3}.CarInstance_3.initial_position 0 0 0 0 0 0
{Car3}.CarInstance_3.initial_velocity 0 0 0 0 0 0
{Car3}.CarInstance_3.vehicle_starting_time 12 12 12 12 12 12
{Car4}.CarInstance_4.initial_position 0 0 0 0 0 0
{Car4}.CarInstance_4.initial_velocity 0 0 0 0 0 0
{Car4}.CarInstance_4.vehicle_starting_time 16 16 16 16 16 16
{Car5}.CarInstance_5.initial_position 0 0 0 0 0 0
{Car5}.CarInstance_5.initial_velocity 0 0 0 0 0 0
{Car5}.CarInstance_5.vehicle_starting_time 20 20 20 20 20 20
{Car6}.CarInstance_6.initial_position 0 0 0 0 0 0
{Car6}.CarInstance_6.initial_velocity 0 0 0 0 0 0
{Car6}.CarInstance_6.vehicle_starting_time 24 24 24 24 24 24
{Car7}.CarInstance_7.initial_position 0 0 0 0 0 0

Parameter Attack First p.1 Attack First p.2 Attack Leader Attack Middle p.1 Attack Middle p.2 No Attack
{Car7}.CarInstance_7.initial_velocity 0 0 0 0 0 0
{Car7}.CarInstance_7.vehicle_starting_time 28 28 28 28 28 28
{Car8}.CarInstance_8.initial_position 0 0 0 0 0 0
{Car8}.CarInstance_8.initial_velocity 0 0 0 0 0 0
{Car8}.CarInstance_8.vehicle_starting_time 32 32 32 32 32 32
{Car9}.CarInstance_9.initial_position 0 0 0 0 0 0
{Car9}.CarInstance_9.initial_velocity 0 0 0 0 0 0
{Car9}.CarInstance_9.vehicle_starting_time 36 36 36 36 36 36

5 Appendix

Figure 5: FMU of the leader

6real_x real_x

5

attacked

3

acceleration

2

speed

1

position_x

integ_pos2

integ_speed

initial_position

high_frequency_sine

du1

attack

initial_velocity

WhlAngF

FwF

FwR

X_o

xdot_o

Info

xdot

ydot

psi

r

FzF

FzR

VehicleBody3DOFSingleTrack1 8real_a real_a 4

position_y

low_frequency_sine

integ_pos1

integ_pos

u

ud

dud

P

integ_speed1

fun1

fun2

operational_mode

clock

sprint_period

acceleration_value

deceleration_value

final_steps

acc_des

attack_time

position_in

speed_in

acc_in

position_low_freq

speed_low_freq

acc_low_freq

position_high_freq

speed_high_freq

acc_high_freq

position_both_freq

speed_both_freq

acc_both_freq

attack

attack_time

clock

position_out

speed_out

acc_out

attacked

7real_v real_v

+
+
+

+
+

+
+

integ_speed2

<X>

Figure 6: FMU of the follower car

7real_v real_v6real_x real_x

4

position_y

3

acceleration

2

speed

low_frequency_sine

integ_speed1 integ_pos1

integ_pos

initial_position

attack_time

integ_pos2

WhlAngF

FwF

FwR

X_o

xdot_o

Info

xdot

ydot

psi

r

FzF

FzR

VehicleBody3DOFSingleTrack

integ_speed2

5

attacked

acc_des_in

attack

attack_amplitude

attack_time

clock

acc_des

attacked

high_frequency_sine

CACC_acc

clock

my_threshold

acc_des

1

position_x

initial_velocity

+
+

8real_a real_a

position_in

speed_in

acc_in

position_low_freq

speed_low_freq

acc_low_freq

position_high_freq

speed_high_freq

acc_high_freq

position_both_freq

speed_both_freq

acc_both_freq

attack

attack_time

clock

position_out

speed_out

acc_out

attacked

integ_speed

+
+

attack

u

ud

dud

P

1

desired_acceleration

du

+
+
+

<X>

	1 The Leader
	Acceleration controller
	Attack function

	2 The follower car
	Attack function
	Vehicle body

	3 Platoon MEC
	4 The simulations and their parameters
	5 Appendix

