
From Execution
Traces to
Formal Models
Team UNIMOL

April 16th, 2025

Workflow of our Approach

Data Normalization: Preparing Traces for Discretization

• Raw traces are time-series of velocity and acceleration (collected
every 0.01s)
• These values vary in range and unit (e.g., m/s, m/s²) not directly →

usable
• We apply Min-Max normalization to map all values into the [0, 1]

interval
• Why?
• To standardize the data before applying symbolic discretization

From Continuous Traces to Symbolic Models

• Our input traces are continuous time-series (velocity, acceleration)
• Formal verification requires symbolic models with a finite state space
• Discretization transforms continuous signals into a finite set of symbols

• "Low", "Medium", "High"
• "Increasing", "Stable", "Decreasing"

• This makes it possible to:
• Model system behaviour algebraically
• Check properties using model checking tools

Discretization is the bridge between
numeric simulation data and formal
symbolic modelling

[0.10] → L [0.55] → M [0.88] → H

Discretization (1/2): Fixed Intervals over Normalized Data

• After normalization, we convert continuous values into symbolic
categories
• First method: cut the [0–1] range into 3 intervals, applied

independently to velocity and acceleration
• Low (0–0.33) L→
• Medium (0.34–0.66) M→
• High (0.67–1) H→

Time Velocity
(norm)

Discrete Acceleration
(norm)

Discrete

T1 0.15 L 0.74 H

T2 0.60 M 0.30 L

Discretization (2/2): Window-Based Trend Detection

• Second method: sliding window on each signal (e.g., 50 samples)
• Use ADF test to check if the window is stationary
• If stationary assign symbolic label (e.g., “stable-low”, “stable-high”)→
• If not compute slope classify as increasing () or decreasing ()→ → ↑ ↓

• Captures more nuanced temporal dynamics

|----50 samples----|----50 samples----|----50 samples----|
 stable low increasing stable high

This method enables a more dynamic discretization,
better reflecting driving behaviour changes over time.

Comparing Discretization Strategies: Instant vs Window-Based

Time Acc (norm) Acc (disc)
t0 0.10 L
t1 0.56 M
t2 0.87 H

Fixed
Binning

Window (samples) ADF result Slope Acc (disc)
t0–t49 Stationary — stable-low
t50–t99 Non-stationary > 0 increasing
t100–t149 Stationary — stable-high

Trend-
Based

The trend-based approach uses statistical testing + slope to abstract behaviour over
time intervals, not single points.

Two Levels of Modelling: Individual and Collective Behaviour

Our approach produces two types of formal models:
1. Model f₁: per-vehicle, time-based sequential behaviour
2. Model f₂: synchronized multi-vehicle behaviour in a platoon

The two models are complementary:
• f₁ captures local evolution of a single agent
• f₂ represents the global coordination and interactions

Execution Traces

Discretized Data

Model f1

Per vehicle
Model f2

Multi-vehicle

We use both models to analyze system
behaviour at micro (individual)
and macro (collective) levels.

Model f₁: Sequential Modelling of a Single Vehicle

Sequential evolution of
a vehicle’s behaviour

Process = (feature₁ ∥
feature₂ ∥ feature3);
next state

• For each vehicle, we model the evolution over time
• Each time step is a state, labeled with discretized acceleration & velocity
• The model is a sequence of these states, using parallel composition of features + sequential composition

in time

P0 P1 P2 Pn

[Acc0]
||

[Vel0]

[Acc1]
||

[Vel1]

[Acc2]
||

[Vel2]

[Accn]
||

[Veln]

[Acc_L]
||

[Vel_L]

[Acc_M]
||

[Vel_L]

[Acc_M]
||

[Vel_M]

[Acc_H]
||

[Vel_H]

Model f₂: Synchronizing Multiple Vehicles
• We combine all f₁ models in parallel
• Introduce a sink process to synchronize all vehicles at each step
• Ensures all vehicles “tick” together → represents platoon coordination

P00 P01 P02 P0n

SINK0

[Acc00]
||

[Vel00]

[Acc01]
||

[Vel01]

[Acc02]
||

[Vel02]

[Acc0n]
||

[Vel0n]

P10 P11 P12 P1n

[Acc10]
||

[Vel10]

[Acc11]
||

[Vel11]

[Acc12]
||

[Vel12]

[Acc1n]
||

[Vel1n]

SINK1 SINKn-1

Vehic
le0

Vehic
le1

The sink orchestrates all vehicles’ transitions. f₂ captures collective
behaviour of the platoon

Property Verification: Analyzing System Behaviour
The formal models f₁ and f₂ are used to verify specific behavioural properties of the platooning system.
Examples of properties checked:

• "If the leader vehicle accelerates, the following vehicles accelerate in sequence."
• "If the leader vehicle brakes, the rest of the platoon reacts accordingly."

These properties are verified using model checking techniques, enabling automated validation.

Property Verification Result

Leader acceleration
propagation

✅ Verified

Leader deceleration
propagation

✅ Verified

Safe inter-vehicle distance ❌ Not verifiedProperty verification helps us understand system dynamics and identify potential weaknesses or
areas for improvement.

Model Checking: Verifying System Properties
• Model checking is a formal verification technique used to automatically check whether a system model satisfies a set

of desired properties.
• The process involves:

• Defining a formal model of the system (e.g., using transition systems or process algebra)
• Expressing the properties to be checked in a formal logic (e.g., LTL, CTL, or µ-calculus)
• Automatically exploring all possible system behaviours to verify whether the properties hold

• If a property is not satisfied, the tool provides a counterexample, showing a specific execution trace where the
property is violated.

Model checking enables exhaustive and automated verification, which is crucial in safety-critical and
autonomous systems.

Future Work: From Data Abstraction to Security Verification
1. Enhancing Discretization

• Explore adaptive binning and dynamic thresholds
• Introduce context-aware discretization, adjusting based on platoon state (e.g., traffic conditions, role in the

platoon)
• Experiment with multivariate discretization (acceleration + velocity + spacing)

2. Improving Model Abstraction
• Extend the formal model with more vehicle parameters (e.g., inter-distance, braking signals)
• Incorporate time-based transitions or delays to model timing behaviour
• Move toward compositional modelling: e.g., vehicles as individual components with shared rules

3. Towards Security Verification
• Define properties that detect abnormal propagation of behaviours (e.g., delayed or missing reactions)
• Model and verify scenarios involving:

• Compromised nodes (e.g., a vehicle not relaying commands)
• Communication delays or spoofed data

• Use model checking to confirm the system maintains safety under adversarial conditions

Our goal is to use formal methods not only to ensure correctness, but also to support resilience and
trust in platooning systems under real-world uncertainties.

	From Execution Traces to Formal Models
	Workflow of our Approach
	Data Normalization: Preparing Traces for Discretization
	From Continuous Traces to Symbolic Models
	Discretization (1/2): Fixed Intervals over Normalized Data
	Discretization (2/2): Window-Based Trend Detection
	Comparing Discretization Strategies: Instant vs Window-Based
	Two Levels of Modelling: Individual and Collective Behaviour
	Model f₁: Sequential Modelling of a Single Vehicle
	Model f₂: Synchronizing Multiple Vehicles
	Property Verification: Analyzing System Behaviour
	Model Checking: Verifying System Properties
	Future Work: From Data Abstraction to Security Verification

