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Abstract—We look at platooning applications that leverage two
wireless technologies for the coordination of vehicle movements.
The first technology is DSRC (dedicated short-range commu-
nications), based on IEEE 802.11p, which allows a distributed
implementation of the platoon coordination. The second technol-
ogy is 5G (and beyond). In the latter case, the platoon control
algorithm is centralized in an edge computing facility close to the
platoon (or in the cloud, if latency allows). Trying to maximize
platoon performance and overcome the unpredictability of the
radio channel, both radio access technologies are simultaneously
active, and a deep neural network (DNN) is used to decide which
of the two should be relied on for platoon control, at each point in
time. The proposed platooning architecture is compared against
previously proposed alternatives, investigating performance with
detailed simulation tools. Results show significant advantages in
terms of accuracy and safety in inter-vehicle distance for all
vehicles within the platoon.

Index Terms—Platooning; DSRC: 5G; DNN; Simulation.

I. INTRODUCTION

Driving together at tight and controlled inter-vehicle dis-
tance through platooning is realized by relying on connected
autonomous vehicles (CAVs) that use wireless communica-
tions to exchange sensor data. Traditionally, platooning sys-
tems rely on dedicated short-range communications (DSRC)
for managing the platoon in a distributed fashion [1]. In par-
ticular, the ETSI ITS-GS5 standard, based on 802.11p, allows
vehicles to exchange cooperative awareness messages (CAMs)
carrying their motion information (e.g., speed, acceleration,
position, and maneuver intentions) to other platoon members.
Upon receiving a CAM, each vehicle evaluates a control law
that provides the desired longitudinal acceleration to maintain
platoon stability.

With the emergence of 5G radio access networks (RANs),
centralized approaches based on cellular communications and
multi-access edge computing (MEC) become possible [2].
Some recent works [3], [4] have shown the feasibility and the
benefits of edge-assisted platooning, overcoming limitations
of DSRC such as limited radio coverage, medium access
contention, shadowing, and multi-hop forwarding for manag-
ing long platoons. In spite of the advantages of centralized
platoon management, the MEC-based approach is completely
dependent on the mobile RAN, and even short periods without
radio coverage can lead to severe consequences. In addition,
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communications through the RAN and backhaul network may
suffer unexpected long delays due to temporary traffic peaks.

As a result, designing a platooning system that relies on a
single radio access technology (RAT) is likely not to meet the
reliability and safety requirements that must be guaranteed
for the entire duration of the platoon journey, regardless of
the level of quality of service (QoS) offered by the specific
RAT. This is especially true in the vehicular context, where
network conditions are continuously changing and there can
be situations in which some RATSs cannot provide a suitable
level of QoS. Hence, vehicles need a set of instruments to
measure how much they can “trust” a platoon control system
(PCS) based on a specific RAT in the short-term future, to be
able to select the most suitable platoon control, or even disable
the platooning driving mode when safety is at risk.

In this work, we discuss the effectiveness of an onboard
system that exploits a deep neural network (DNN) for the
prediction of the short-term reliability of the PCSs available
to the vehicle. In the inference, we consider both the kinematic
and communication contexts of the vehicle. In particular, we
use measurements directly collected on the vehicle, e.g., speed,
acceleration, 5G radio channel quality, and DSRC channel
contention time, as well as the age of information (Aol) of
data coming from other vehicles/edge servers. The goal is to
provide the vehicle with the ability to choose which PCS to
use in the next few actions.

As metrics for the estimation of the effectiveness of the
operation of the PCS, we consider the divergence of the
platoon control instruction with respect to the ideal instruction
that would be computed with a perfect zero-latency and
lossless RAT. However, it must be noted that a coupling
exists between kinematic and communication contexts. The
same level of network QoS can have very different impacts
on the platoon behavior, depending on its kinematics context.
For example, strong acceleration/deceleration phases are very
sensitive to network delays, while cruising periods at quasi-
constant speed can tolerate higher latencies.

The contributions of this work are the following.

1) We define a partly distributed multi-RAT PCS monitor-
ing and decision system (PMDS), which operates under
the control of a DNN;

2) We show that a proactive approach can be very effective
in choosing the control actions to be implemented in the
short-term future, thanks to DNN predictions;

3) We study the proposed platooning approach with very
detailed simulations based on tools that have gained
credibility in the vehicular domain;



4) We compare our proposal against existing alternatives,
and we show that it provides better performance in terms
of inter-vehicle distance discrepancies with respect to
those that would be obtained with perfect information.

II. RELATED WORK

The combination of RATs (from WiFi to cellular to LiFi)
to improve performance has already been widely investigated
in vehicular networking and was demonstrated to provide sig-
nificant gains in terms of data rate, robustness to interference,
and link reliability [5], [6], [7].

Sepulcre et al. [8] proposed a distributed and decentralized
algorithm that allows each vehicle to autonomously and dy-
namically select the most adequate communication technology.
The proposed algorithm maximizes the network capacity while
satisfying the application requirements. The communication
technology options are limited to V2V paradigms, considering
different portions of radio spectrum (DSRC, WiFi, TV White
Spaces). Jacob et al. [9] investigated a combination of IEEE
802.11p and LTE-V2V (Mode 4) to improve the reliability
of cooperative automated driving applications. To increase
the packet reception probability, multiple copies of the same
packet are sent over different RATs. Segata et al. [10] pre-
sented SafeSwitch, an onboard system specifically designed for
platooning, which determines the reliability of multi-RAT by
constantly monitoring the packet delivery ratio (PDR) of three
distributed communication technologies, IEEE 802.11p, VLC,
and LTE C-V2X (Mode 3). Moreover, SafeSwitch suspends
cooperative driving if no RATs provide a suitable level of
PDR. Yacheur et al. [11] proposed a decentralized RAT selec-
tion strategy that uses Deep Reinforcement Learning aiming to
limit resource consumption and channel load, offering reliable
and high throughput communication. Differently from our
work, the solution is not tailored to platooning and considers
V2V approaches only, ITS-G5 and LTE-V2X (Mode 3). Re-
cently, [12] proposed a dual-link-enabled vehicular network, to
support inter-vehicular communication exploiting both DSRC
and LTE (Uu). The proposed approach optimizes the traffic
steering between the two technologies based on the network
load in both DSRC and LTE cellular networks.

Different from previous works, we combine DSRC and 5G
communication technologies to design an onboard PMDS that
monitors and selects actions computed by multiple available
PCSs, tailored to platoon longitudinal control. The reliability
of the two PCSs based on either DSRC or 5G-Edge is mea-
sured w.r.t. their direct impact on platoon performance, rather
than communication QoS parameters. Finally, by predicting
the reliability of platooning systems, our solution aims to
prevent the actuation of incorrect instructions.

III. SYSTEM MODEL

We consider a platoon of vehicles in which each member
is equipped with two radio interfaces: DSRC (802.11p) and
cellular (5G), as depicted in Fig. 1. We assume that the platoon
was formed before the time window we consider and that
no vehicle joins or leaves the platoon during the observation
period. Each vehicle relies on two parallel and independent

DSRC
(802.11p)

Y\ ||II 56
Y
N

g .
o . (g:) 5= @
TRk 7

K, \* “, N
& Q 4 o) & Q) & Q
Fig. 1: ML assisted Multi-RAT platoon.

PCSs. One PCS is the traditional distributed platooning con-
trol, in which each vehicle computes a control law to adjust
its acceleration, using data read from its onboard sensors and
those received from the other vehicles through V2V communi-
cation. The other PCS delegates the computation of the control
law to an edge controller that receives sensors’ data via the
mobile radio network and sends back acceleration instructions
to vehicles, e.g., as described in [3]. Hence, we describe such
PCS as based on ‘5G-Edge’ (the controller could also be in the
cloud, if the latency between controller and vehicles is within
few tens of milliseconds [3]). Both PCSs use the Cooperative
Adaptive Cruise Control (CACC) [13] control law with the
same parameters. The control law adopts a constant space
policy and the leader—predecessor—follower topology, i.e., it
computes the desired acceleration for each vehicle using the
data of the vehicle itself, the one provided by the preceding and
leader vehicles, with the target of maintaining a fixed distance
between each pair of adjacent vehicles.

In addition to PCSs, each vehicle is also equipped with a
machine learning (ML) module for the evaluation of the reli-
ability of PCSs. Each vehicle performs the evaluation locally,
using only pieces of information that are available onboard,
without cooperating with other platoon members. Based on
the evaluation performed by the ML module, a vehicle can
decide whether or not to actuate the instructions computed
by either PCS, with the objective of preventing unstable and
dangerous situations. In particularly critical contexts, when no
PCS is believed to provide suitable reliability, a vehicle can
temporarily adopt a non-cooperative control law, e.g., Adaptive
Cruise Control (ACC). We remark that the decision of which
PCS to use or to temporarily suspend the cooperative control is
taken individually and independently by each platoon member.
This design choice guarantees a secure execution environment,
enforcing data protection and privacy. Moreover, in this work,
we assume that the local decision is not broadcast to other
platoon members.

IV. RELIABILITY OF PLATOONING INSTRUCTIONS

Executing platooning instructions blindly can have serious
consequences on the safety of vehicles and passengers. It
is therefore critical that vehicles can trust the results of the
adopted control law. To that purpose, it is important to render
vehicles capable of evaluating the quality and correctness of
received data and instructions, which depends on network
issues and delays, as we discuss below.

A. Impact of Network Performance

Under ideal communications conditions, the CACC control
law guarantees two properties. The first is individual vehicle



stability, according to which, vehicle spacing errors converge
to zero if the platoon leader speed is constant. The second
is string stability, according to which, spacing errors do not
amplify as they propagate towards the tail of the platoon [13].

Kinematic properties of vehicles are a source of uncertainty,
but existing control laws are flexible enough to support a wide
variety of vehicles and engines, under ideal conditions or in
the presence of limited noise [13]. However, under non-ideal
communications conditions in which link quality can degrade
significantly, at least some of the vehicles might receive data
that leads to inaccuracy in platoon control. In the case of
DSRC, vehicles may miss timely updates of the input of
the control law, and compute inaccurate control decisions.
In the case of 5G-Edge, vehicles may fail to receive platoon
control commands or receive them when it is too late. In these
contexts, it is natural to resort to the evaluation of performance
metrics that can quantify the quality of the received data for
each of the available communication technologies. A possible
performance indicator is the packet delivery ratio (PDR), i.e.,
the fraction of packets that are not lost due to communication
errors. Another metric is the Age of Information (Aol), that
represents the freshness of data, which in our case are used
for platoon control [14]. High values of Aol lead to the use
of outdated information, which might jeopardize performance
and safety. In this paper we consider both PDR and Aol.

The link quality is affected by various factors strictly related
to the radio technology used by the platooning system. For
example, a DSRC-based PCS is affected by limited communi-
cation range, co-channel interference, uncoordinated channel
access, and shadowing effects [15], [16]. Instead, the PCS
relying on 5G-Edge suffers from unstable channel conditions
due to vehicle mobility and poor radio coverage areas. Besides,
both technologies suffer when approaching congestion.

B. Instruction reliability measure

To provide the vehicle with a PCS reliability measure, we
consider as reference the ideal case of instantaneous lossless
data transfer. With DSRC, this means that the control law is
computed onboard, using data instantaneously read from the
vehicles’ sensors. With 5G, the ideal case implies that data are
transferred from vehicles to the edge computing facility with
no delay and that the platoon control instructions are computed
at the edge in zero time, and reach vehicles with no delay.
This represents the best possible operating conditions for the
platoon control law, in which all the Aol values are zero and
the actuation lag is the only delay component in the system,
which is already taken into account in the design of the control
law [13]. The control law operating under these conditions
always provides the best instruction, a*, guaranteeing both
individual vehicle and string stability properties.

Unfortunately, this is not what happens in practice. Every
PCS relying on network communications introduces delays
and possibly also losses, hence leading to platoon control
instructions that differ from the ideal case. Intuitively, the
larger the difference between the instruction provided by the
platoon system and the ideal one, the less reliable the PCS.
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Fig. 2: Platoon system reliability example.

Formally, we define the level of reliability of PCS s (either
based on DSRC or 5G-Edge) at time ¢ as follows:

r(t) = a®(t) — a™(t), (D

where a®(t) is the instruction provided by PCS s at time ¢ and
a*(t) is the ideal instruction at time ¢. In Fig. 2, we show an
example of the evolution of the reliability value over time for
the 6th follower in a platoon of 8 vehicles, with a PCS using
DSRC in which the leader is traveling with a sinusoidal speed
pattern. The red dashed lines represent empirical reliability
thresholds (£0.06m/ s2, in figure). In this example, the PCS
provides reliable instructions until 130 s. From that time on,
the level of reliability is not sufficient, exceeding the threshold
multiple times, meaning that the communication system fails
to provide a suitable level of QoS to manage the platoon.

Unlike previous works, in which system reliability is based
on the evaluation of network parameters that indirectly degrade
the platoon performance, e.g., PDR [10], we measure the
divergence of the provided instruction w.r.t. the ideal one,
that directly affects the platoon performance. Unfortunately,
we cannot directly obtain the value of r*(t), because it is
impossible to compute the ideal instruction a*(¢) on board
at time ¢. For this reason, we need to solve a regression
task to infer reliability, based on information available on
board. Moreover, we aim to predict the reliability of the
system in the short-term future, to prevent the vehicle from
applying unreliable instructions. Formally, the prediction task
to evaluate the reliability of PCS s performed by a vehicle at
time ¢ is defined as follows:

r*@t),...,r°(t+ 7)) = fos (X°(t —0),...,x°(t))) (2)

where x°(t) represents the vector of the features related to
system s observed at time ¢, o represents the duration of the
window of past observations and 7 stands for the span of
the prediction window. Finally, fg(-) represents the predictor
function given model parameters 6°.

V. PCS MONITORING AND DECISION SYSTEM (PMDS)

In this section, we describe the onboard PMDS responsible
for evaluating the reliability of the available PCSs, thus
providing the vehicle with reliable instructions in the near
future. Our approach continuously predicts the reliability level
of each PCS using a neural network architecture, based on
a set of features, organized in time series, extracted from
onboard sensors, and checking the status of the radio channel.
Given the differences between communication technologies,
each vehicle has its onboard component for monitoring and
predicting the reliability of the two PCSs. At training time,
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two different neural network models are used, one for 5G
and one for DSRC, relying on both common and technology-
specific feature sets. At inference time, each vehicle predicts
the reliability level of the two PCSs, based on its own view
of the current status of the system. Fig. 3 shows the schema
of the proposed onboard PMDS. Starting from data derived
from onboard sensors and system status, which, for each PCS
s, can be represented as a matrix of d° features along a time
window of span o, a neural network predicts the next sequence
of reliability levels, whose span is equal to 7. Subsequently, a
heuristic algorithm decides the next reliability level of the two
PCSs, based on the prediction made by the neural network.
Finally, the reliability of the PCSs is given to an instruction
manager, which is responsible for selecting which PCS to use,
i.e., CACC with 5G-Edge, or CACC with DSRC, or neither of
those, switching to ACC (we refer to this case as standalone).

A. Input features and preprocessing

The feature set used for training the two models includes
common kinematic information and system-specific features.

1) Common kinematics features: vehicle acceleration, dis-
tance from the preceding vehicle, and relative position of the
vehicle within the platoon.

2) 5G-Edge features: channel quality indicator (CQI) in
uplink and downlink direction, round-trip time (RTT), and Aol
values accounting for the freshness of the status information
of the leader, the preceding car and the vehicle itself, as well
as the Aol of the platoon controller instruction.'

3) DSRC features: MAC layer queueing time for sending
the packets, packet drop events, received signal power of the
leader and preceding vehicle messages, Aol values of status
information of the leader, and of the preceding vehicle.

Due to the features’ different and irregular sampling rates,
we align them by performing a resampling with a fixed period
of 250 ms. The chosen resampling period is longer than the
typical PCS control loop, around 100 ms, avoiding missing
values under reliable system conditions. However, prolonged

'In the 5G-Edge PCS, Aol values are included in the instruction message.

instability of the platoon may cause missing values for some
features, e.g., a lack of mobile network coverage leads to no
data about RTT and Aol values. To handle these cases, we
estimate the missing data with linear interpolation and we add
extra binary features to record the missing value event.

B. Neural network architecture

Fig. 4 shows the architecture of the neural network. The
input consists of matrices of size d® x o, where d° represents
the number of features for PCS s, and o is the time window
span, i.e., each feature has its time series of o elements. The
architecture is composed of three main components:

o 1D Convolutional Neural Network (1D CNN): The first
stage of the network employs a 1D CNN for identifying
short-term dependencies and feature interactions within
the fixed time window o.

o Multilayer Perceptron (MLP): The intermediate layers
of the network consist of an MLP that serves to model
higher-level interactions among the input features and
project the features in a latent space that represents the
current reliability status of the system.

o Recurrent Neural Network (RNN): The final stage
leverages a Gated Recurrent Unit (GRU) to output a
predicted sequence of size 7, representing the system’s
reliability levels over the next 7 time steps, starting from
the current reliability status of the system.

C. Loss function

Given the PCS s, its corresponding ML module can be op-
timized using gradient descent, minimizing the loss function:

LU o (0) = 3060 = o Gl +ane S 6x0) = S (ol (3)

where x; represents the vector of the features related to the
system observed in a time window 4, fgs(x;) is the next
sequence predicted by the model for time window 4, and f(x;)
is the true next sequence after ¢. The first term represents
the average mean absolute error (MAE) between the true and
predicted next sequence, which is a standard loss function
term for multi-regression tasks. The second term acts as a
regularization term on the shape of the predicted sequence,
where « controls the strength of the regularization. It is the
average mean squared error (MSE) between the values of the
derivatives of the next sequence and the learned function. This
regularization term prevents the predicted sequence from dras-
tically mismatching the shape of the true reliability function.
This mitigates the risk of obtaining a reliability predictor that
is close, on average, to the true value but disagrees with the
reliability level along the time window.

D. Reliability decision

Based on the prediction of reliability levels provided by the
neural network, the decider module makes the final decision
using a threshold-based heuristic. We compute the absolute
value of the predicted reliability level and consider a PCS s
reliable if the following conditions are met: (i) the mean of
absolute values of reliability levels r* is below a threshold d;



TABLE I: Instruction manager system selection.

5G-Edge | DSRC System used
£ yes yes 5G-Edge
3 yes no 5G-Edge
% no yes DSRC
& no no Standalone

(ii) the average of the subset of values of r° that exceed 0
is lower than a second threshold A > §. Otherwise, the PCS
is considered unreliable. The first condition evaluates overall
predicted values, while the second focuses on peak values.

E. Instruction manager

The last step is to provide the vehicle controller with reliable
instructions based on the deciders’ evaluation. The instruction
manager is the component of the PMDS that collects the
instructions and the reliability evaluation of the PCSs and
selects the most appropriate option. Table I shows the system
selection based on the evaluation of the reliability of the PCSs.
We prioritize the 5G-Edge PCS over DSRC and we select
the Standalone system only when both PCSs are unreliable.
The motivation for giving priority to 5G derives from the
fact that, in larger platoons, distances between vehicles may
render DSRC links unstable. Lastly, the instruction manager
implements a hysteresis mechanism to prevent continuous
switching among PCSs.

The PMDS operates at fixed time intervals (0.5 s) and the
evaluation is performed using only the input time windows,
disregarding the reliability evaluation of the previous step.
Considering the hysteresis mechanism and the PMDS operat-
ing period, the handover between control systems takes at most
1.5 seconds?. Lastly, the fallback to the standalone system is
possible at any moment, with no latency, as the instruction is
always computed and sent to the instruction manager.

VI. SIMULATION SETUP

We consider a highway scenario with a fleet of 8 light-
duty commercial vehicles. We develop a full-fledged simulator
framework using OMNeT++ on top of the SUMO simulator
[17]. In particular, we rely on Veins [18] and Simu5G [19]
to model vehicles and 5G-Edge network, respectively. The
ML module is implemented using PyTorch and is integrated
with OMNeT++, allowing the simulation of onboard inference.
Table II reports the main simulation parameters.

A. Training settings

The training phase is performed independently for the
5G-Edge and DSRC PCSs. To collect meaningful training
datasets specific to each PCS, we run simulation campaigns
by constructing network scenarios having different levels of
criticalities in terms of network coverage, background traffic,
and radio interference, using combinations of the parameters
reported in Table II. The resulting datasets provide a wide
variety of reliability levels for both PCSs.

The hyperparameters of the model and training settings are
reported in Table III. In particular, the ML module observes a

’In this work, we perform switches among systems if the reliability
conditions hold for at least 3 consecutive evaluation steps.

TABLE II: Simulation parameters

General parameters

Simulated road

[ Straight 3-lane highway

Simulation time (repetitions)

[ 300 s (60 s of warm-up time) (10 repeats)

Platoon parameters

Number of platoon members

8

Leader speed pattern

Sinusoidal 90 km/h (4 5 km/h), 0.1 Hz

CACC spacing policy

Constant space (15 m)

ACC spacing policy

Constant ahead time (0.7 s)

Decision

system parameters

Input time window size (o)

5 s (20 time steps)

Prediction time steps (7)

5 s (20 time steps)

Decider thresholds (6, A)

5 = 0.06m/s%, A =0.07m/s>

DSRC configuration

TX power, Radio sensitivity

20 dBm, -95 dBm

Pathloss model

Rician (k = 8 dB)

Obstacle loss

Model from [16]

Channel band (bandwidth)

5.9 GHz (10 MHz)

Number of RSUs (area size)

0, 10, 20, 30 (250 m x 40 m)

RSUs traffic

3kB, exponential(20 ms)

5G network config

ration

Base station physical resource

3 RBs per TTI (1 ms)

UE Tx power (gain)

26 dBm (+0dBi)

Base station Tx power (gain)

46 dBm (+18dBi)

Carrier frequency

800 MHz, 2100 MHz

Base station model

ITU-Urban & ITU-Rural macrocell

Pathloss model

Rural: Free Space o = 2.5
Urban: Free Space o« = 3.5

Base station scheduler

Max Channel Indicator

Number of background devices

0, 40 UEs

Packet size (UL/DL)

10, 500 byte

Packet frequency (UL/DL)

20 pkt/s (UPD Constant Bit Rate)

Generation starting/ending time

U(120 s, 150 s) / U(220 s, 250 s)

Congestion-free 5G-Edge RTT

20 + 5 ms

TABLE III: Training

settings and hyperparameters

1D-CNN

Kernel size: 3, Max-polling size: 3

MLP

Layers: [128, 128, 64], dropout: 0.1, Relu

GRU hidden size

1

Training/Test splitting

80/20, 5-folds Cross-val.

Optimizer (learning rate, batch)

Adam (0.001, 128)

time window of 5 seconds and predicts the reliability level for
the next 5 seconds. The resulting model contains around 77k
parameters, requiring less than 1 MB of memory for running
both ML models, and is suitable for onboard deployment.

B. Evaluation settings

To evaluate the performance of the proposed ML approach,
we design a simulation scenario that incorporates challenging
situations for both communication systems. The goal is to
define an evaluation scenario in which the vehicles are ex-
pected to use all operating modes, including standalone, across
the simulation. Fig. 5 shows the schema of the evaluation
scenario. We deploy 4 base stations (BSs) in two groups,
creating a mobile network coverage hole between the second
and the third BS. Moreover, we generate background traffic
at the BS level which causes temporary saturation of the
physical resources of BSs. The background traffic generation
starts approximately when the platoon vehicles are under the
coverage of BS 2 and ends when they are served by BS 3. To
challenge also the DSRC PCS, we deploy a variable number of
roadside units (RSUs) close to the highway that interferes with
the platoon communications. While the number of RSUs that
we use in experiments may be larger than in most operating
conditions, we must consider the possibility of interference
from other platoons, or users located in proximity of a urban
highway segment.
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We expect that the platoon vehicles operate CACC using
the 5G-Edge PCS in the first part and progressively switch to
the DSRC PCS due to the combined effect of the background
traffic and the weakening of the cellular coverage. Eventually,
vehicles should temporarily suspend platooning, adopting the
standalone system when traversing the RSUs’ area. Later, vehi-
cles are expected to rejoin cooperative driving using DSRC or
5G-Edge depending on the channel conditions. Finally, the 5G-
Edge PCS should be adopted until the end of the simulation.

VII. RESULTS

We use simulation experiments to evaluate PCS kinematics
performance, PMDS accuracy, and safety.

A. Baseline decision systems

We compare our ML-based PMDS approach with two
baseline PMDS alternatives, each focusing on just one feature
(either PDR or Aol). Both baselines determine the reliability
of the PCSs using a simple threshold-based algorithm:

1) PDR-based PMDS (PDR for short). This baseline stems
from [10]. It monitors the arrival ratio of platoon messages
(5G-Edge instructions and DSRC status messages) and con-
siders a PCS reliable if the PDR is above a threshold (we use
0.85, which we observed to provide the best overall results).

2) Aol-based PMDR (Aol for short). This approach com-
putes the mean Aol of vehicle status messages and platoon
control instructions over a time window. Then it takes the
highest mean Aol across the evaluated features and considers
a PCS reliable if the result is below 100 ms (as in standards).

Both baselines adopt the same instruction manager policy
(see Section V-E) to select the acceleration instruction sent to
the vehicle controller.

B. Distance error and platoon stability

One of the main performance indicators of a platoon control
system is its ability to guarantee low inter-vehicle spacing
error and preserve string stability. In Fig. 6 we report the box
plot of the distribution of the distance error w.r.t. the front
vehicle, for each follower vehicle, in different mobile network
scenarios. We recall that CACC adopts a constant spacing
policy, i.e., a fixed inter-vehicle distance, regardless of the
traveling speed. In this analysis, we exclude the data points
corresponding to periods when vehicles disconnect the platoon
and use the standalone system because the ACC control law
employs a constant ahead-time spacing policy and the platoon
coordination is temporarily suspended.

The results show that the ML-based PMDS is able to main-
tain the vehicle spacing error within + 1.5 m in all scenarios.
Moreover, it preserves the string stability property, with the
only minor exception of the Urban 2100 MHz environment, in
which we can observe a slight increase in the spacing error of
the last follower. On the contrary, the PDR and Aol baselines

TABLE IV: Decision system accuracy (classes percentage)

Rural 800.MHZ 2109 MHz
Correct | Missed Hazard Correct | Missed | Hazard
ML based 97.4 0.5 2.1 95.1 1.1 3.8
PDR (0.85) 91.0 2.1 6.9 87.2 45 8.3
Aol (100ms) 95.0 3.7 1.3 93.2 55 1.3
Urban SOO.MHZ 2109 MHz
Correct | Missed Hazard Correct Missed Hazard
ML based 94.4 1.4 4.2 92.7 22 5.1
PDR (0.85) 88.6 6.3 5.1 82.0 9.2 8.8
Aol (100ms) 91.7 6.7 1.6 90.1 8.2 1.7

fail to maintain a bounded spacing error and to preserve
string stability. In particular, the inter-vehicle distance error
grows significantly for the last two vehicles. In addition, while
Aol exhibits more consistent performance across the mobile
network scenarios, the PDR approach worsens its performance
under more challenging 5G channel conditions, as we observe
in scenarios with a carrier frequency of 2100 MHz.

In Fig. 7, we report the evolution of the distance error in
meters versus time in seconds, focusing on the 6th follower. At
the bottom of each figure, we also report the PCS used by the
vehicle, where the color intensity reflects the agreement across
the simulation runs. As we can observe, the overall behavior
is what we expect, as described in Section VI-B. We see a first
transition from 5G-Edge to DSRC due to the progressive lack
of mobile network coverage. This happens around 130 or 140 s
in the 800 MHz case, and around 110-120 s in the 2100 MHz
case. Then the platooning is temporarily suspended (around
180 s) for a short interval, causing an increase in inter-vehicle
distance due to the control law change. Finally, the vehicle
rejoins platooning using DSRC or 5G-Edge PCS, according to
channel conditions. From the figure, we can observe that PDR
and Aol are more conservative, using the standalone mode
for a longer time, causing a later realignment to the target
distance. Moreover, the Aol baseline switches more often to
the DSRC PCS, as it is more sensitive to 5G delay variations.

C. Decision system accuracy

Results presented in the previous section highlight that
the three decision systems exhibit distinct and sometimes
contrasting operational patterns, leading to different platoon
performances. To investigate the accuracy of the decision
systems, we classify the decision based on the instantaneous
reliability level of the selected technology. More specifically,
the technology s is reliable at time ¢ if |r®(t)| < 0.06 m/s?,
(i.e., below the threshold § used in the PMDS to select the
PCS) otherwise it is labeled as unreliable. By combining
the reliability of the two radio technologies, we divide the
system decision into three classes: correct, missed, and hazard.
Correct means that the selected technology is reliable or
standalone mode is used when no radio technology provides
a suitable reliability level. Missed refers to missed platooning
opportunities, i.e., the standalone mode is used when at least
one radio technology is reliable. Finally, Hazard refers to
decisions that mistakenly select unreliable radio technologies.

In Table IV, we report the percentage of decisions in the
three classes in all network scenarios. Our ML-based PMDS is
the one producing most correct decisions, outperforming base-
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Fig. 8: PMDS outputs of 6th follower (Urban-2100 MHz).

lines in all scenarios, with a correct decision rate ranging from
92.7% to 97.4%. 1t also limits missed platooning opportunities,
thus improving platoon efficiency. However, we can observe
a non-negligible percentage of hazard decisions, up to 5.1%
in the most challenging scenario. Aol is the most inefficient
approach, as it misses a considerable amount of platooning
opportunities, from 3.7% up to 8.2%. PDR shows the poorest
performance, with the highest rate of hazard choices.

To better understand the hazard decision of the ML-based
decision system, in Fig. 8 we report the evolution of decision
classes over time for the 6th follower in the urban-2100 MHz
scenario, along with the technology used and the confusion
matrix of the reliability evaluation of PCSs using either 5G-
Edge or DSRC, separately. Each bar aggregates 10 seconds
of simulated time. What emerges from the figure is that the
concentration of hazard decisions between 170-190 s is mainly

due to the misclassification of the reliability of the PCS based
on DSRC technology, combined with a too-conservative eval-
uation of the PCS based on 5G-Edge. Differently, the effect
of the large number of false positive outcomes of the DSRC-
based PCS around 200 s is mitigated by the prioritization of
the PCS relying on 5G-Edge rather than DSRC.

Overall, the ML-based approach provides the highest rate of
correct decisions and better platooning efficiency, to the detri-
ment of hazard decisions in the most challenging conditions,
caused by inaccurate evaluation of the reliability of the DSRC
PCS, which requires further development and refinements.

D. Platoon safety

The last aspect we analyze is the level of safety that the
onboard PMDS can guarantee. For each simulation run, we
measure the evolution of the minimum inter-vehicle distance
over time across the whole platoon. In Fig. 9, we report the
distance error w.r.t. the target distance (15 m) in the urban-
2100 MHz scenario. Colored areas represent the range between
the 5th and 95th percentiles across all simulation runs. Lines
report averages. Results show that the ML-based approach
offers the highest level of safety with a limited displacement of
3 meters below the target distance at around 170-180 s. On the
contrary, PDR and Aol fail to provide the same level of safety,
in particular at the end of the simulation, with PDR distance
errors falling dangerously below -6 meters. The reason of the
poor performance of the baselines can be ascribed to the lack
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of agreement among the followers about the platoon system to
use. We recall that each vehicle makes independent decisions
and does not share them with other followers. By focusing
on the platoon system used over time, which is indicated
with colors at the bottom of each graph, we can observe that
vehicles equipped with PDR and Aol operate using a mix of
5G-Edge and standalone systems (deduced from the low color
intensity). The different spacing policies used by CACC and
ACC (see Table II) cause perturbations in the platoon, leading
to instability and unsafe displacement. Conversely, our ML-
based PMDS switches between 5G-Edge and DSRC that use
the same control law, thus limiting perturbations.

VIII. CONCLUSIONS

In this paper, we presented an onboard PCS monitoring ad
decision system based on ML, meant to predict the short-
term level of reliability of the available PCSs. We proposed a
metric for measuring the reliability of a platoon system, which
accounts for the divergence of the acceleration instructions
provided by the platoon system and ideal ones. The simu-
lation results have shown the effectiveness of the proposed
approach, outperforming PDR and Aol based baselines. In
particular, our ML-based approach guarantees the highest level
of decision accuracy and platooning efficiency. Lastly, the
proposed approach exhibits a more consistent behavior among
the followers, avoiding extra perturbation along the platoon.

Simulation results are promising, although they highlight
minor misclassification errors under challenging radio channel
conditions, especially for the reliability of the DSRC-based
PCS. However, thanks to the availability of two PCSs in
our proposal, infrequent inaccurate predictions do not lead to
unsafe situations. Still, we remark that models can be further
improved through an additional fine-tuning process which
was out of the scope of our work in this paper. Moreover,
we foresee that adopting explainable Al techniques could
provide a meaningful overview of which features are the most
significant for a better design of an ML-based PCS monitoring
and decision algorithm, which we leave for future work.

Finally, another key aspect of the monitoring and decision
system is the reliability threshold value 0. Tuning or even

dynamically adapting its value is not straightforward, and we
leave it for future work as well; indeed, it directly affects
the platoon performance and even small variations could lead
to significantly different platoon behavior. In particular, the
selected values should guarantee suitable performance in a
wide variety of speed profiles. In this context, the detailed
simulation of the vehicle kinematics plays a central role in
evaluating the tolerable degree of instruction divergence.

Extensions of this work shall consider the effect of interfer-
ence in the cellular system, the impact of larger platoon setups
and of platoon maneuvers, as well as varied environments, so
as to obtain more general conclusions.
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