

<u>Christian Quadri</u> Manuel Dileo Vincenzo Mancuso Marco Ajmone Marsan

IEEE VNC 2025 - Porto, Portugal 2-4 June 2025

Computer Science
UNIVERSITÀ DEGLI STUDI DI
MILANO

Platoon communication systems

Distributed coordination through DSRC

Onboard control law computation

Limited radio range

Uncoordinated radio access

Centralized coordination

Edge control law computation

Infrastructure radio coverage (5G- Uu)

Highly variable channel conditions

Multi-RAT platooning

Operational modes (always running):

5G-Edge DSRCStandalone

Centralized Cooperative platoon (CACC)
Distributed Cooperative platoon (CACC)
Non-Cooperative (ACC)

ML-based reliability evaluation

Local monitoring and evaluation using only onboard information (sensors + from platoon systems)

Reliable operational mode selection:

5G-Edge / DSRC / Standalone

Independent decision

No broadcasting to the other platoon members

Reliability measure

Ideal instruction (instruction computed without network delays) represents the best coordination instruction

The reliability of a platoon system is the **difference** between the **instruction** provided $a^s(t)$ and the **ideal instruction** $a^*(t)$

$$r^s(t) = a^s(t) - a^*(t)$$

Goal

Inferring the system reliability in the next future using past observation

$$\langle r^s(t), \dots, r^s(t+\tau) \rangle = f(\langle \mathbf{x}^s(t-\sigma, \dots, \mathbf{x}^s(t)) | \boldsymbol{\theta}^s)$$
Future reliability

Past data observation

Regression task: next instructions difference

$$\langle r^s(t), \dots, r^s(t+\tau) \rangle = f(\langle \mathbf{x}^s(t-\sigma, \dots, \mathbf{x}^s(t)) | \boldsymbol{\theta}^s)$$

Model architecture:

two independent models, same architecture

Custom loss function

$$L(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} |\mathbf{y}_i - \hat{\mathbf{y}}_i| + \alpha \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i' - \hat{\mathbf{y}}_i')^2$$

"Reliability Mean"

"Reliability Shape"

Is the platoon system s reliable?

Heuristic-based binary decision based on threshold applied to the next sequence prediction

$$\langle r^s(t), \dots, r^s(t+\tau) \rangle \rightarrow \text{Yes/No}$$

Based on the reliability of the systems the **Instruction manager** selects the most suitable operation mode

5G reliable

→ 5G-Edge

5G unreliable & DRSC reliable

→ DSRC

5G unreliable & DSRC unreliable → Standalone

Hysteresis parameter to prevent continuous switches

Simulation framework

Evaluation setting

8 vehicles platoon

Leader speed: Sinusoidal 90km/h +/- 5km/

Target distance: 15m

ML module: 5 seconds observation 5 seconds prediction 2Hz evaluation frequency

Standalone
ACC → larger inter-vehicle distance

Baselines

PDR-Based: packet delivery ratio based baseline

- Exponential smoothing of PDR
- PDR < 85% → Platoon system unreliable
- Approach based on [1]

AoI-Based: age of information based baseline

- Avg. of AoI of CAMs
- Exponential smoothing of avg. of Aol
- Avg. AoI > 100 ms → Platoon system unreliable

[1] M. Segata et al., "Multi-Technology Cooperative Driving: An Analysis Based on PLEXE," in IEEE Transactions on Mobile Computing, vol. 22, no. 8, pp. 4792-4806, 1 Aug. 2023,

Results - Platoon stability

ML based guarantees more strong platoon string stability than the baselines

Results - Error distance over time 6th follower

Results - Error distance over time 6th follower

TP

Simulation time (s)

FP

0.5

0.0

Decision system accuracy

Rural	800 MHz			2100 MHz		
Kurui	Correct	Missed	Hazard	Correct	Missed	Hazard
ML based	97.4	0.5	2.1	95.1	1.1	3.8
PDR (0.85)	91.0	2.1	6.9	87.2	4.5	8.3
AoI (100ms)	95.0	3.7	1.3	93.2	5.5	1.3

Urban	800 MHz			2100 MHz		
Orban	Correct	Missed	Hazard	Correct	Missed	Hazard
ML based	94.4	1.4	4.2	92.7	2.2	5.1
PDR (0.85)	88.6	6.3	5.1	82.0	9.2	8.8
AoI (100ms)	91.7	6.7	1.6	90.1	8.2	1.7

Conclusion & Next steps

ML approach for selecting platoon operational mode

Reliability measurement of divergence w.r.t. ideal instructions

The approach shows good performance

- Operational mode transition
- Handling challenging scenarios

What's next

- DSRC model needs *fine tuning* to prevent false positives
- Testing other leader speed patterns
- More sophisticated and precise decision function
- Explainability

Platoon safety

Min. front distance across the whole platoon

ML based approach benefits from more agreement among vehicles

Baselines:

Mix of cooperative and non-cooperative operational modes

Model input features

Common kinematics features:

- Vehicle acceleration
- Distance from the preceding vehicle
- Relative position of the vehicle within the platoon

5G-Edge features:

- Channel quality indicator (CQI) UL and DL
- Round-trip time (RTT),
- AoI of the status information: Leader, Preceding and Self vehicles
- Aol of platoon instruction

DSRC features:

- MAC layer queueing time
- Packet drop events,
- RSSI of the leader and preceding vehicle messages
- AoI of the status information: Leader, Preceding vehicles

Heuristic-based binary decision

A platoon system is reliable if the predicted sequence satisfies both conditions:

1. The mean of absolute values of reliability levels is below a threshold δ In this work δ == 0.06 m/s²

2. The average of the subset of predicted values that exceeds δ is lower than a second threshold $\Delta > \delta$ In this work $\Delta == 0.08 \text{ m/s}^2$

Simulation parameters

*				
General parameters				
Simulated road	Straight 3-lane highway			
Simulation time (repetitions)	300 s (60 s of warm-up time) (10 repeats)			
Platoon parameters				
Number of platoon members	8			
Leader speed pattern	Sinusoidal 90 km/h (± 5 km/h), 0.1 Hz			
CACC spacing policy	Constant space (15 m)			
ACC spacing policy	Constant ahead time (0.7 s)			
Decision system parameters				
Input time window size (σ)	5 s (20 time steps)			
Prediction time steps (τ)	5 s (20 time steps)			
Decider thresholds (δ, Δ)	$\delta = 0.06m/s^2, \Delta = 0.07m/s^2$			
DSRC	configuration			
TX power, Radio sensitivity	20 dBm, -95 dBm			
Pathloss model	Rician $(k = 8 dB)$			
Obstacle loss	Model from [16]			
Channel band (bandwidth)	5.9 GHz (10 MHz)			
Number of RSUs (area size)	0, 10, 20, 30 (250 m x 40 m)			
RSUs traffic	3kB, exponential(20 ms)			

5G network configuration			
Base station physical resource	3 RBs per TTI (1 ms)		
UE Tx power (gain)	26 dBm (+0dBi)		
Base station Tx power (gain)	46 dBm (+18dBi)		
Carrier frequency	800 MHz, 2100 MHz		
Base station model	ITU-Urban & ITU-Rural macrocell		
Pathloss model	Rural: Free Space $\alpha = 2.5$		
	Urban: Free Space $\alpha = 3.5$		
Base station scheduler	Max Channel Indicator		
Number of background devices	0, 40 UEs		
Packet size (UL/DL)	10, 500 byte		
Packet frequency (UL/DL)	20 pkt/s (UPD Constant Bit Rate)		
Generation starting/ending time	U(120 s, 150 s) / U(220 s, 250 s)		
Congestion-free 5G-Edge RTT	$20 \pm 5 \text{ ms}$		