

Deliverable D4.2 - Report on the use of

Abstract Interpretation for Robustness

assessment

FORESEEN

Pag. 2

FORESEEN

FORmal mEthodS for attack dEtEction in autonomous driviNg systems

PRIN 2022 PNRR

Project number: P2022WYAEW

CUP: I53D23006130001

Deliverable D4.2: Report on the use of Abstract Interpretation

for Robustness assessment

Project Start Date: 30/11/2023 Duration: 24 months

Coordinator: University of Pisa

Deliverable No D4.2

WP No: WP3

WP Leader: RU-MOL

 Tasks: T3.4 - Leader RU-PI

Due date: M: 15-20

Delivery date: July 31, 2025

Authors: RU-MI, RU-MOL, RU-PA, RU-PI

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE
Restricted to a group specified by the consortium (including the Commission

Services)

CO
Confidential, only for members of the consortium (including the Commission

Services)

Pag. 3

Contents

1 INTRODUCTION.. 5

2 ABSTRACT INTERPRETATION OF THE PLATOON .. 5

Simple model ... 5

Polyhedron .. 7

Polyhedron represented with its vertices .. 7

3 ABSTRACT INTERPRETER .. 9

4 ANALYSIS OF THE ROBUSTNESS OF THE MODEL CHECKING ANALYSIS BASED ON ABSTRACT TRACES ... 11

5 ANALYSIS OF A TRACE UNDER ATTACK .. 17

6 CONCLUSIONS .. 20

BIBLIOGRAPHY ... 21

Pag. 4

List of Acronyms

CACC Cooperative Adaptive Cruise Control

CPS Cyber Physical System

INTO-CPS Integrated Toolchain for model-based design of Cyber Physical Systems

FP False Positives

FN False Negatives

FDR False Discovery Rate

FNR False Negative Rate

Pag. 5

1 Introduction

This deliverable reports the results of Task 3.4 of WP3 that investigates the robustness of the proposed model

checking analysis. Such analysis is based on the model of the system built starting by abstract traces. A set of

properties satisfied by traces without attacks is collected. Given a trace, the violation of a property from the

given set, is interpreted as a possible attack in the system.

As a first contribution, we provide a simplified linear interpretation of the physical system, on top of which

we create a tool for abstract interpretation and execution of the system, using convex polyhedra. We use such

interpretation to create a region in state-space of the correct execution traces. For instance, we would like to

show that a trace under attack will not belong to such a region in state-space. We also provide a MATLAB

implementation of the tool.

As a second contribution, we show examples of validation of robustness of the model checking analysis in

case of no-attack/attack using the developed tool. This is done by comparing the results of our linear interpreter

with an abstract trace inferred from a real simulation traced using the approach developed in the project

(described in Deliverable D4.1).

2 Abstract interpretation of the platoon

In this section we provide a model for abstract interpretation of the system [Cous92][Yam19][Ranz20].

Simple model

Firstly, we start by simplifying the physical model of our system by linearizing it. For simplicity’s sake and

without any loss of generality we reduced the number of cars in the platoon to just 3, one leader and two

followers. The resulting system can be seen as an iterative method

𝑥[𝑘 + 1] = 𝐶𝑥[𝑘] + 𝑏,

where 𝑥[𝑘] is the vector representing the state of the system at time 𝑘𝑇. The state vector is made of the

following values 𝑥 = [𝑎0, 𝑎1, 𝜀1, 𝑑1, 𝜀2, 𝑑2], which are, respectively:

• The imposed acceleration on the leader

• The acceleration of the first follower car

• The speed difference between the first car and the leader, defined as 𝜀1 = 𝑣0 − 𝑣1

• The distance between the first car and the leader, defined as 𝑑1 = 𝑝0 − 𝑝1

Pag. 6

• The speed difference between the second car and the first, defined as 𝜀2 = 𝑣1 − 𝑣2

• The distance between the second car and the first, defined as 𝑑2 = 𝑝1 − 𝑝2

Regarding the quantization constant 𝑇, the system works with both 𝑇 = 0.05 and 𝑇 = 0.01, we will consider

the former value.

Let us assume the leader moves forward with constant acceleration 𝑎0 and the followers decide their

acceleration using the CACC control law:

𝑢𝑖 = 𝛼1𝑎𝑖−1 + 𝛼2𝑎0 − 𝛼3𝜀𝑖 − 𝛼4 ∑𝜀𝑗

𝑖

𝑗=1

− 𝛼5𝑑𝑖

The summation found in forth addendum represents the speed difference between the leader the i-th car, by

writing the formula this way the save a state variable in the vector x for each follower car we add. The vector

of parameters is defined as 𝛼 = [0.5 0.5 −0.3 −0.1 −0.04].

Let us also assume the dynamics of the follower cars can be described as

𝑎0[𝑘 + 1] = 𝛾𝑎𝑜[𝑘], 𝑎𝑖[𝑘 + 1] = 𝑢𝑖[𝑘]

That is the acceleration of the leader is called by a certain factor 𝛾 and the acceleration of the follower cars are

set by the CACC control law.

𝑣𝑖[𝑘 + 1] = 𝑎𝑖[𝑘]𝑇 + 𝑣𝑖[𝑘]

𝑝𝑖[𝑘 + 1] =
1

2
𝑢𝑖[𝑘]𝑇2 + 𝑣𝑖[𝑘]𝑇 + 𝑝𝑖[𝑘]

That is the velocity and position of the cars are approximated by the uniform rectilinear motion.

Then, substituting, obtaining the linear system described by the matrix and vector

𝐶 =

[

𝛾 0 0 0 0 0
1.0000 𝜓 0.4000 0.0400 0 0

−0.0050 −0.0010 0.9960 −0.0004 0 0
−0.0000 −0.0000 0.0100 1.0000 0 0
0.0050 −0.0040 0.0030 0.0004 0.9960 −0.0004
0.0000 −0.0000 0.0000 0.0000 0.0100 1.0000]

, 𝑏 =

[

0
−0.5600
0.0056
0.0000

0
0]

Assuming 𝛾 ∈ (0,1), the matrix has spectral radius 𝜌(𝐶) < 1 thus we know that the iterative method defined

in this way will converge. We modified the control law of the first follower to 𝑢1̃ = 𝑢1 + 𝜓𝑎1 with 𝜓 = 0.01,

this way we ensure that ‖𝐶‖ ≠ 0 while 𝜌(𝐶) < 1 remains true; otherwise, we would’ve had a singular matrix.

With 𝛾 = 1 the spectral radius is 𝜌(𝐶) = 1, thus there will be no convergence. This is obvious as ∀𝑘 𝑥0[𝑘] =

𝑎0[𝑘] = 𝑎0[1].

Pag. 7

Polyhedron

The idea is to define a convex polyhedron of the possible states at the state k defined as

𝑃𝑘 = {𝑥 ∶ 𝐴[𝑘]𝑥 ≤ 𝑑[𝑘]}

Where the matrix A and the vector d have as many rows as the number of inequality constraints imposed on

the polyhedron.

Let us consider a single iteration of the method 𝑦 = 𝐶𝑥 + 𝑏, it follows that 𝑥 = 𝐶−1𝑦 − 𝐶−1𝑏, thus a

polyhedron defined as 𝐴𝑥 ≤ 𝑑 can be rewritten as 𝐴𝐶−1𝑦 ≤ 𝑑 + 𝐶−1𝑏, giving us the update rule:

𝐴[𝑘 + 1] = 𝐴[𝑘]𝐶−1

𝑑[𝑘 + 1] = 𝑑[𝑘] + 𝐶−1𝑏

Now with this method we can give an abstract interpretation of a set of infinite possible evolutions of the

system over time.

Unfortunately, such a method is numerically unstable, that is there’s the numerical error of performing the

computation on a computer is so large that the results are meaningless. The culprits are the product between

matrices and the computation of the inverse. In the next section we introduce stabler method.

Polyhedron represented with its vertices

Let us consider the base case with 𝜓 = 0 and let us represent the convex polyhedron as the convex hull of a

set of vertices, that is:

𝑃𝑘 = conv({𝑉1[𝑘], … , 𝑉𝑚[𝑘]})

A limitation of this representation is that we can only represent bounded polyhedra, it is possible to represent

unbounded polyhedra by adding a cone in the definition; however, for simplicity’s sake we will consider only

the case of bounded polyhedra. When 𝛾 ∈ (0,1), since the iterative method is convergent, it is impossible for

a bounded polyhedron to become unbounded, if not for some numerical errors that might emerge; on the other

hand, when 𝛾 = 1, we will limit ourselves to say that the resulting polyhedron is unbounded in the event on

the vertices becoming infinity. In fact, with the former condition, 𝛾 ∈ (0,1), we have that method will always

converge to 𝑥 = (𝐼 − 𝐶)−1𝑏 = [0, 0, 0, 14, 0, 14]; whereas, with the latter, the matrix (𝐼 − 𝐶)−1 is singular

thus no unique solution exists.

We can apply our affine transformation to each vertex, obtaining the polyhedron at the next step through the

iterative method defined as:

𝑃𝑘+1 = conv({𝐶𝑉1[𝑘],… , 𝐶𝑉𝑚[𝑘]}) ⊕ 𝑏

Pag. 8

The resulting MATLAB program is

VERTICES = [
 0 0 10 3 0 5;
 0.2 0 10 6 0 5;
 0.1 0 -4 6 0 5;
 0 0 15 6 0 5;
 0 0 -4 3 4 8;
 0 3 12 5.5 -2 10;
 0 -2 10 3 4 5;
]';

STEPS = 3000;
t = 0;

for i = 1:STEPS
 VERTICES = C*VERTICES + b;

 t = t + T;
end

Let us consider the set of vertices described by the matrix below, where each column represents a point. We

iterate the method for 30 seconds, that is for 3,000 iterations. In Figure 1 we show the projection over the

𝑑1 × 𝑑2 plane of the convex hulls given by the vertices at beginning and after the process.

𝑉0 =

[

0 0 0.1 0 0 0 0 0.5 −0.24 0.11
0 0 0 0 0 3 −2 −2 −2 2
3 6 6 6 3 5.5 3 2 9 0
10 10 4 15 4 12 10 10 10 20
0 0 0 0 4 −2 4 4 4 0
5 5 5 5 8 10 5 7.5 2 14]

Pag. 9

Figure 1 Evolution of a set of points after 30 seconds

With these starting points the method seems to converge in the neighborhood of (14,14), even with the use of

𝛾 = 1. Below we report the matrix of vertices after the 3,000 iterations:

𝑉3000 =

[

0 0.20 0.10 0 0 0 0 0.50 −0.24 0.11
−0.00 0.19 0.10 −0.01 0.00 −0.01 −0.00 0.50 −0.26 0.11
−0.03 −0.06 −0.02 −0.08 0.02 −0.06 −0.03 −0.01 −0.10 −0.02
14.15 14.38 14.13 14.46 13.91 14.37 14.15 14.08 14.60 14.10
−0.01 −0.05 −0.01 −0.07 −0.02 −0.04 −0.06 −0.05 −0.14 −0.02
14.09 14.42 14.11 14.53 14.12 14.35 14.39 14.32 15.00 14.13]

The figures have been truncated to the second decimal place for brevity’s sake.

Again, each column of the matrix represents a vertex of the polyhedron after the transformation. We can see

how all points are converging to the desired distance of 14 meters. Interestingly, convergence seems to be a

little slower for the vertex with negative leader acceleration, in which the vehicles keep a greater gap of fifteen

meters.

3 Abstract interpreter

We begin by considering the intervals as defined in the deliverable D4.1 on the driving mode 1. We have the

following intervals:

Pag. 10

Label Acceleration Speed Distance

VERY LOW -0.5000 -0.0222 0 0.1672 4 12

LOW -0.0222 0.0033 0.1672 5.7513 12 13.5

MEDIUM 0.0033 1.4962 5.7513 16.0666 13.5 14.5

HIGH 1.4962 3.4146 16.0666 16.1035 14.5 16.0

VERY HIGH 3.4146 4.0000 16.1035 16.5000 16 20

The lower bounds of VERY LOW and the upper bounds of VERY HIGH are set to the lowest and highest

value found in the simulations’ traces, respectively. In principle they should be set to minus and plus infinity,

but such a value would generate an unbounded polyhedra, that is untreatable with the method presented.

Let us assume the acceleration of the leader zero, i.e. 𝑎0 = 0. Let us consider all the possible combinations of

labels for the values of the tuple 𝑥 = [𝑎0, 𝑎1, 𝜀1, 𝑑1, 𝜀2, 𝑑2], keep in mind that 𝜀𝑖 = 𝑣𝑖−1 − 𝑣𝑖; we have to vary

a grand total of six variables over five possible values, giving us 56 = 15′625 combinations.

Since we are considering closed intervals for each of the state variables of 𝑥 – even the acceleration can be

considered as 𝑎0 ∈ [0,0], – the resulting polyhedron is a hyperrectangle described by 26 = 64 vertices, where

six is the dimensionality of the state vector. All the vertices represent all the possible combinations of the lower

and upper bounds of the various intervals. Since the acceleration of the leader remains constant, we can avoid

saving the permutations on 𝑎0, thus the polyhedron can be described by 25 = 32 vertices.

Pag. 11

4 Analysis of the robustness of the model checking analysis

based on abstract traces

Let us consider a state 𝑥0 at a certain time 𝑡0 and the state 𝑥1 at time 𝑡1 from a certain simulation trace. The

abstract interpreted will associate to these two states two sets of labels, that can be considered as two

hyperrectangles (polyhedra) such that 𝑥0 ∈ 𝑃0, 𝑥1 ∈ 𝑃1.

The idea is to feed the polyhedron 𝑃0 to the iterative method for enough steps to reach 𝑡1, the resulting

polyhedron, let us call it 𝑅1, represents the set of possible evolutions.

Ideally 𝑅1 ⊆ 𝑃1 as the iterative method can represent more complex state-spaces that simple hyperrectangles

and one would expect the entirety of the feasible points predicted by the iterative method to be within the

feasible points given by the label-based abstract domains. We want to gauge the quality of the step that maps

the points in 𝑃0 to 𝑃1 by using the abstract interpretation.

Let us define some metrics to evaluate these two methods against each other. The intersection defined as 𝑍1 =

𝑅1 ∩ 𝑃1, gives an indication of robustness as it represents correct information learnt by the analysis, that is it

represents the true positives. The difference 𝑃1 − 𝑍1

represents the state-space of possible states that were not

learnt by the model checking analysis, that is the false

negatives (FN). The difference 𝑅1 − 𝑍1 represents states

learnt by the model checking which are not correct, that is the

false positives (FP). We also define the union set as 𝑈1 =

𝑅1 ∪ 𝑃1.

For instance, in a spam filter for e-mails, the false negatives

are spam e-mails that were classified as not spam; whereas

the false positives are normal e-mails that were classified as

spam.

We consider the hypervolumes of these metrics. We also consider the false discovery rate (FDR), that is the

number of false positives divided by the cardinality of 𝑅1 ; and the false negative rate (FNR), that is the

number of false negatives divided by the cardinality of the set 𝑃1.

We also observe how the iterative method tends to quickly flatten out – so to speak – certain dimensions when

considering the space-state in its entirety, so we will consider three projections on hyperspaces of lower

dimensionality:

Pag. 12

• A 5D projection in which we drop the acceleration of the leader, after all this is a constat as it is an

input of the problem, thus certainly resulting in a polyhedron with volume zero in the 6D space

• A 3D projection in which we remove the inter-vehicular distances and we keep only 𝑎1, 𝜀1, 𝜀2

• A 2D projection in which we keep only the two inter-vehicular distances 𝑑1, 𝑑2

For instance, let us consider the following state variables from a simulation trace:

𝑥0 = [2.4, 2.3565, 0.7953, 7.8037, 0.6073, 6.6309]

𝑥1 = [2.8, 2.9476, 0.7978, 8.6090, 0.6265, 7.2450]

These two states appeared at time 5 and 6 seconds respectively, thus resulting in a time interval of 𝑡1 − 𝑡0 = 1

second.

We run the procedure, obtaining the following figures:

Volume 5D 3D 2D

|𝑃0| 2.613E+04 4.083E+02 6.400E+01

|𝑅1| 1.419E-05 3.058E+01 4.064E+02

|𝑃1| 2.613E+04 4.083E+02 6.400E+01

|𝑍1| 1.130E-07 1.421E+01 6.207E+01

|𝑈1| 8.361E+04 5.757E+02 4.104E+02

|𝑅1 − 𝑍1|

(False Positives)

1.408E-05 1.637E+01 3.443E+02

|𝑃1 − 𝑍1|

(False Negatives)

2.613E+04 3.941E+02 1.927E+00

|𝑅1 − 𝑍1|/|𝑅1|

(False Discovery Rate)

99.204% 53.523% 84.727%

|𝑃1 − 𝑍1|/|𝑃1|

(False Negative Rate)
100.000% 96.519% 3.011%

The E denotes the scientific notation, for instance 1.4E5 is 1.4 × 105. The two bars |P| denote the volume of a

polyhedron.

Pag. 13

When considering the most complete projection in the five-dimensional hyperspace, quite unfortunately, the

rate of false discovery and false negatives is almost 100%. If we drop the inter-vehicular distances, thus

considering the 3D projection on (𝑎1, 𝜀1, 𝜀2), the false negative ratio falls to 96% and the false discovery rate

to 53%. On the other hand, when considering only the projection on the dimensions of the inter-vehicular

distances, the false discovery rate remains quite terrible, increasing to 84%; but the false negative rate

decreases to an impressive 3%.

In Figure 2 we plot the projection of the three polyhedra onto the 𝑑1, 𝑑2 plane. This projection is related to the

platoon safety property that uses this metric, that is the distance between a vehicle and the one in front. We see

how the iterative method gives us a greater area than what we got with our abstract interpreter. When

considering this projection, we see that are certain points in 𝑃0 that might cause a collision, i.e. 𝑑𝑖 < 0, this

might be due to certain points in 𝑃0 that under normal conditions should not appear in a nominal – that is

without attacks – platoon trace. We also see that it is almost true that, for this projection, 𝑃1 is almost contained

in 𝑅1.

Figure 2 2D projection over (d1, d2) P0 and P1 are same polyhedron

In Figure 3, when projecting over the other three axis 𝑎1, 𝜀1, 𝜀2 we obtain a smaller volume. In this projection,

the 𝑃1 is clearly not contained in 𝑅1 and the section that does not overlap is greater, thus producing a greater

number of false negatives, as already described in the previous table.

Pag. 14

Figure 3 3D projection over 𝑎1, 𝜀1, 𝜀2 P0 and P1 are same polyhedron

In general, one can analyze projection over different axis, in one example we considered the projection over

the inter-vehicular distances and in the other one, we considered the projection over the relative speeds and the

acceleration of the first car.

One glaring issue of the 5D projection is that the |𝑍1| ≃ 0, that is the volume is very small compared to the

other two polyhedra, possibly making the figures meaningless.

Let us now consider another step from the same simulation trace:

𝑥0 = [0, 0.0168, 0.0223, 13.8765, 0.0377, 13.7347]

𝑥1 = [0,−0.0110, 0.0043, 14.2764, 0.0101, 14.1403]

These two states appeared at time 5 and 6 seconds respectively, thus resulting in a time interval of 𝑡1 − 𝑡0 = 6

seconds. These states come from a part of the simulation without attacks where the steady state was about to

be reached.

These two data-points are interesting because they map to two different classes and thus two different

hyperrectangles when fed to the abstract interpreter.

Pag. 15

We run the procedure, obtaining the following figures:

Volume 5D 3D 2D

|𝑃0| 2.57E-01 2.57E-01 1

|𝑅1| 2.12E-12 1.42E-04 2.07E+00

|𝑃1| 8.01E-03 8.01E-03 1

|𝑍1| 1.05E-12 1.34E-04 8.18E-01

|𝑈1| 1.10E-02 8.11E-03 2.33E+00

|𝑅1 − 𝑍1|

(False Positives)

1.07E-12 8.77E-06 1.26E+00

|𝑃1 − 𝑍1|

(False Negatives)

8.01E-03 7.87E-03 1.82E-01

|𝑅1 − 𝑍1|/|𝑅1|

(False Discovery Rate)

50.38% 6.15% 60.54%

|𝑃1 − 𝑍1|/|𝑃1|

(False Negative Rate)

100.00% 98.33% 18.19%

When considering the hyperspace in its entirety we still get a terrible 100% of false negative rate, but, on the

bright side, the false discovery rate is a more reasonable 50%. When considering the projections on the 3D

space – i.e. we consider the 3D projection, – we obtain further improvement in the false discovery rate,

decreasing to almost 6% but the false negative rate remains at an unremarkable 98%. If the study the 2D

projection on the inter-vehicular distances, we see that the false discovery rate increases again to 60%; but the

false negative rate drops to a quite positive 18%, again reaffirming the 2D projection to be the best one among

these under study.

These results confirm that the 2D projection on the inter-vehicular distances is the one that works better as it

reduces the rate of false negatives greatly; however, the false discovery rate remains quite high in any case.

Figure 4 shows the polyhedra projected over the 2D space defined by the two inter-vehicular distances (𝑑1, 𝑑2).

Unlike the previous example, there’s no possibility of collisions. Also, the figures are near the convergence

point (14,14) for both the iterative method and the abstract interpreter. The two areas overlap greatly, as we

already saw from the metrics in the table.

Pag. 16

Figure 4 2D projection over (d1, d2) P0 and P1 are same polyhedron

Figure 5 shows the projection on the space defined by a1, ε1, ε2. Again, both the iterative method and the

abstract interpreter are converging near the convergence point (0,0,0). In this case there’s a change of class,

and thus of hyperrectangle, considered by the abstract interpreter.

Figure 5 3D projection over 𝑎1, 𝜀1, 𝜀2

Again, in the 5D projection we have |𝑍1| ≃ 0, that is the volume is very small compared to the other two

polyhedra.

Pag. 17

5 Analysis of a trace under attack

We now want to apply our method of abstract interpretation for the detection of an attack during the execution

of the system by analyzing a trace of simulation. Firstly, we take two data-points representing the state of the

platoon, then – as we did in the previous section –we use the abstract interpreter to map these two points to

two abstract hyperrectangles 𝑃0, 𝑃1, then we apply on the first hyperrectangle the iterative method to obtain a

certain convex polyhedron 𝑅1.

Ideally, the method should be able to detect a possible attack as the space 𝑅1 describing the feasible states

should not overlap at all with the possible states found in the trace, that is 𝑃1 ∩ 𝑅1 = ∅.

We consider a simulation trace of an attack that begins from 𝑡𝐴 = 60, that is in the first sixty seconds the

platoon behaves normally, then an attack takes place. The attack is performed on the first car, and it is one of

the attacks on the actuators described in the previous deliverables. In particular, the acceleration command of

the first car is modified as follows:

𝑢̃1 = 𝑢1 + 0.08

Where the 𝑢 is the command imposed by the CACC control law on the car. It is important to note that this is

the 𝑢 found on the MATLAB and INTO-CPS implementation of the platoon, previously introduced and

defined and defined in the previous deliverables, and not the 𝑢 of the iterative method found in the previous

sections of this one.

Let us now consider another step from the same simulation trace:

𝑥0 = [0, 0.008,0.003,14.000,0.001,13.994]

𝑥1 = [0,−0.010,−0.115,12.856,0.001,14.283]

These two states appeared at 59 and 69 seconds respectively, thus resulting in a time interval of 𝑡1 − 𝑡0 = 10

seconds. That is one second before the attack was about to start and nine seconds after the attack began.

As before, we ran the method and obtained the following figures:

Volume 5D 3D 2D

|𝑃0| 4.69E-01 4.69E-01 1

|𝑅1| 1.55E-13 4.71E-05 1.56E+00

|𝑃1| 1.20E-02 8.01E-03 2.50E+00

Pag. 18

|𝑍1| 0 4.71E-05 1.34E-02

|𝑈1| 1.66E-02 8.01E-03 3.56E+00

|𝑅1 − 𝑍1| 1.55E-13 1.49E-13 1.54E+00

|𝑃1 − 𝑍1| 1.20E-02 7.96E-03 2.44E+00

Interestingly, the volume of the intersection is empty, that is 𝑍1 = 𝑃1 ∩ 𝑅1 = ∅, or at least almost empty in

the various projections. Thus, we showed that none of the possible correct evolutions from 𝑃0 can lead to any

state found in 𝑃1, thus suggesting that something isn’t quite right in the behavior of the platoon. Indeed, an

attack is taking place.

In Figure 6 we show the projection of the found polyhedra on the 𝑑1, 𝑑2 plane. We can see how the rectangle

containing the trace under attack, represented by the green area “P1” in the plot, contains values of the distance

between the leader and the first car between 12 and 13.5 meters – i.e. 𝑑1 ∈ [12, 13.5] – suggesting car 1 is

traveling way to close. This confirms again the importance of the distance metric as a metric to gauge the

correct operations of the platoon. The small overlapping section 𝑍1 is 0.3% of the union 𝑈1 of the two sets.

Figure 6 2D projection over (d1, d2)

Pag. 19

Analogously, when considering the 3D projection, show in Figure 7, there’s little overlap between the two

sets, in particular the volume of 𝑍1 is only the 0.6% of the volume of the union 𝑈1.

Figure 7 Projection over a1, eps1, eps2

The MATLAB programs are available at the following git repository hosted on the GitHub website:

https://github.com/ForeseenPRIN/formal_method_analysis

https://github.com/ForeseenPRIN/formal_method_analysis

Pag. 20

6 Conclusions

This deliverable has presented the development and application of an abstract interpretation framework to

assess the robustness of a model checking analysis for attack detection in autonomous vehicle platoons. The

work focused on creating a simplified, linearized model of a three-vehicle platoon using convex polyhedra to

represent sets of possible system states to then compare the results with the abstract traces obtained through

an abstract interpreter.

The core methodology involved propagating a set of initial states (a polyhedron) through the linearized system

dynamics to compute the reachable set 𝑅1 after a given time window. This predicted set was then compared

against the abstract state 𝑃1 derived from a simulation trace using an interval-based abstraction. The

comparison, quantified through metrics like False Discovery Rate (FDR) and False Negative Rate (FNR)

across different dimensional projections, served as the basis for evaluating the robustness of the trace-based

analysis.

The key findings of our investigation are as follows:

1. Effectiveness in Attack Detection: The primary success of this approach is its demonstrated ability

to detect attacks. In the analyzed scenario, the abstract interpreter correctly identified an anomalous

condition: the reachable set 𝑅1 from a pre-attack state had a null intersection with the abstract state 𝑃1

observed during the attack (𝑍1 ≃ ∅). This clear discrepancy signals a violation of the system's

expected behavior, successfully flagging the presence of the actuator attack.

2. Projection-Dependent Performance: The robustness metrics are highly dependent on the chosen

state-space projection. The analysis revealed that:

o High-Dimensional Projections (5D/3D): These projections, which include acceleration and

relative velocity variables, resulted in prohibitively high false negative rates (often >96%).

This indicates that the current interval-based abstraction for these variables is too coarse,

leading the model checker to potentially miss many deviations that the precise linear model

would catch.

o 2D Distance Projection: In contrast, the projection onto the inter-vehicular distances (𝑑1, 𝑑2)

proved to be the most reliable metric for this specific safety property. It consistently yielded

low false negative rates (as low as 3% and 18% in nominal cases), meaning the abstract

Pag. 21

interpreter and the linear model largely agreed on the feasible distance states. This confirms

that inter-vehicle distance is a critical and robust indicator of platoon health.

3. Limitations and Numerical Challenges: The vertex-based method for polyhedron propagation,

while more stable than a matrix-inversion approach, still faces challenges. The volumes of polyhedra

in high-dimensional spaces can become vanishingly small or numerically unstable, making metrics

like FDR and FNR in full 5D space less meaningful.

In conclusion, this work successfully developed a formal framework for robustness assessment and

demonstrated its practical value in verifying the capabilities in directly detecting attacks. It provides not just a

verification method but also actionable insights for refining the analysis and strengthening the security of

autonomous driving systems.

Bibliography

[Cous92] P. Cousot, R. Cousot, Abstract interpretation frameworks, J. Logic Comput. 2 (1992) 511–547.

[Yam19] Yamaguchi, T., et al. “Application of Abstract Interpretation to the Automotive Electronic Control

System.” In Enea, C., Piskac, R.(eds) Verification, Model Checking, and Abstract Interpretation. VMCAI

2019. LNCS, 11388. 2019

[Ranz20] Ranzato, F., Zanella, M. “Abstract interpretation of decision tree ensemble classifiers,” Proc. Of

the AAAI Conf. on Artificial Intelligence, 34(4), 2020.

MATLAB, https://www.mathworks.com/products/matlab.html

