

Deliverable D4.1 - Report on the process to

build a formal model for vehicular behavior

traces and on-line tests generation

FORESEEN

Pag. 2

FORESEEN

FORmal mEthodS for attack dEtEction in autonomous driviNg systems

PRIN 2022 PNRR

Project number: P2022WYAEW

CUP: I53D23006130001

Deliverable D4.1: Report on the process to build a formal model for

vehicular behavior traces and on-line tests generation

Project Start Date: 30/11/2023 Duration: 24 months

Coordinator: University of Pisa

Deliverable No D4.1

WP No: WP3

WP Leader: RU-MOL

 Tasks: T3.1, T3.2, T3.3, T3.5 - Leader RU-MOL

Due date: M9-20

Delivery date: July 31, 2025

Authors: RU-MI, RU-MOL, RU-PA, RU-PI

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE
Restricted to a group specified by the consortium (including the Commission

Services)

CO
Confidential, only for members of the consortium (including the Commission

Services)

Pag. 3

Contents

1 INTRODUCTION.. 5

2 BACKGROUND .. 5

2.1 Model Checking for Behavioral Verification .. 5

2.1.2 Calculus of Communicating Systems (CCS) .. 6

2.1.3 Mu-Calculus for Property Specification ... 7

3 TOOL FOR INDEXING AND DATA OVERVIEW ... 8

4 TOOL FOR LABELING DATA .. 10

5 FORMAL MODEL DEFINITION AND PROPERTIES SPECIFICATION .. 11

5.1 Mode Detection ... 12

5.2 Trace Discretization .. 13

5.3 Formal Model Generation .. 16

5.4 Property Specification .. 17

5.5 Explainability ... 20

5.6 On-line test generation .. 20

6 STOCHASTIC MODEL CHECKING FOR ANALYSIS ON CRITICAL TRACES .. 21

6.1 Modeling a platoon .. 22

6.2 Modeling system’s properties .. 25

7 ROADMAP FOR FUTURE WORK ... 26

BIBLIOGRAPHY ... 26

Pag. 4

List of Acronyms

CACC Cooperative Adaptive Cruise Control

CCS Calculus of Communicating Systems

CPA Correlation Power Analysis

CPS Cyber Physical System

CSV Comma Separated Values

CWB-NC Concurrency Workbench of New Century

HTML HyperText Markup Language

INTO-CPS Integrated Toolchain for model-based design of Cyber Physical Systems

JSON JavaScript Object Notation

SMC Statistical Model Checking

V2E Vehicle to Edge

V2V Vehicle to Vehicle

Pag. 5

1 Introduction

 This deliverable describes the methodology defined in WP3 to build a formal model for vehicular

behavioral traces, starting from co-simulations logs produced in WP2; and to identify on-line tests for attack

detection, starting from labeling of data related to the position of cars (e.g, too far or too close), and labeling

of the trace (e.g., no attack, attack to the leader, or attack to car i). Moreover, stochastic model checking has

been used to analyse, for example, the probability of an attack having a significant effect on the distance

between cars, within a very short period of time.

In particular, the formal model of behavioral traces is built starting from processes expressed in the CCS

process algebras in Task T3.1; then in Task T3.2 patterns for detection of attacks are identified and in T3.3

they are formalized in mu-calculus temporal logic; finally in Task T3.5 explainability of the proposed approach

is analysed.

2 Background

In the following sections, we provide the necessary background to support the methodology presented in this

project. We introduce the key concepts and formal foundations related to process modeling, symbolic trace

abstraction, and formal verification through model checking.

2.1 Model Checking for Behavioral Verification

Formal verification techniques, and in particular model checking [Clarke99], offer a systematic approach to

verifying properties of system behavior by exhaustively exploring all possible execution paths of a formal

model. This technique proves especially useful in safety-critical contexts such as cooperative vehicular

systems, where ensuring adherence to specific behavioral constraints is essential.

In our methodology, the behavior of each vehicle is encoded as a process in the Calculus of Communicating

Systems (CCS) [Mil89], a well-established process algebra that allows for the representation of concurrent

systems. These CCS models are then subject to model checking, using modal mu-calculus [Koz83] as the

specification language for properties of interest.

The mu-calculus is a powerful formalism capable of expressing a wide range of temporal and modal properties,

including reachability, safety, liveness, and synchronization conditions. For example, properties can express

constraints such as: “A vehicle never enters a critical state of proximity for more than two consecutive time

steps” or “Acceleration and deceleration patterns alternate consistently under normal driving conditions”.

Pag. 6

Model checking is the automatic verification of whether a transition system satisfies a temporal logic formula.

By systematically exploring all reachable states of the system, it checks the validity of the specified properties

and ensures that the modeled behavior adheres to expected rules.

In our methodology, model checking enables the automated validation of behavioral properties over the entire

symbolic model derived from real vehicular traces, serving as a rigorous bridge between simulation data and

formal safety assurance. Specifically, it allows us to:

• Validate that symbolic traces follow safe behavioral patterns (e.g., avoiding critical low distances).

• Detect violations of coordination rules (e.g., ensuring that all vehicles synchronize at each time step).

• Formally verify that the modeled platoon dynamics comply with the intended operational modes.

2.1.2 Calculus of Communicating Systems (CCS)

The Calculus of Communicating Systems (CCS) is a process algebra introduced by Robin Milner to formally

model and reason about concurrent systems. In CCS, system behavior is described in terms of processes that

perform actions, possibly in parallel and with synchronization. Each process is defined recursively, using a set

of syntactic constructors. The basic syntax of CCS is as follows:

P ::= nil -- the inactive process

 | a.P -- action prefix (a followed by P)

 | P + Q -- choice (non-deterministic)

 | P | Q -- parallel composition

 | P \ L -- restriction (hiding of actions in L)

 | A -- process identifier (with definition A  P)

where:

• a is an action, which can be either observable (e.g., send, receive) or internal (denoted by ).

• P and Q are processes.

• L is a set of actions to be hidden (restricted).

Example

A simple process that sends a message and then terminates is written as:

𝑃 = 𝑠𝑒𝑛𝑑. 𝑛𝑖𝑙

Pag. 7

Two processes that communicate via complementary actions 𝑎 and 𝑎̅ can synchronize:

𝑃 = 𝑎. 𝑛𝑖𝑙 𝑄 = 𝑎̅. 𝑛𝑖𝑙 𝑃 | 𝑄 → 𝜏

In our context, each vehicle is modeled as a CCS process, where actions encode symbolic labels of

acceleration, speed, and distance. The full platoon is modeled as the parallel composition of all vehicles,

possibly with synchronization enforced via additional coordination actions (e.g., sink, go).

2.1.3 Mu-Calculus for Property Specification

To specify and verify properties over CCS models, we use the mu-calculus, a highly expressive logic that extends

modal logic with least (µ) and greatest (ν) fixed points. This makes it particularly well-suited for expressing properties

over potentially infinite behaviors, such as safety, liveness, and reachability.

Syntax of mu-calculus

Given a set of actions Act and propositional variables X, the syntax of modal mu-calculus formulas is:

φ ::= tt | ff -- constants

 | X -- propositional variable

 | φ ∧ φ | φ ∨ φ -- conjunction/disjunction

 | [a]φ | <a>φ -- box and diamond modalities

 | μX.φ | νX.φ -- least and greatest fixed point

• [a]φ: For all executions of action a, φ holds afterward.

• <a>φ: There exists an execution of action a after which φ holds.

• μX.φ: The least fixed point — used to express eventuality (e.g., “the possibility of reaching a good

state”).

• νX.φ: The greatest fixed point — used for invariants (e.g., “always avoid unsafe state”).

Satisfaction Semantics

The satisfaction of a formula φ by a state s of a transition system (denoted s ⊨ φ) is defined inductively:

• every state satisfies tt; no state satisfies ff.

• s ⊨ φ₁ ∨ φ₂ if s ⊨ φ₁ or s ⊨ φ₂.

• s ⊨ φ₁ ∧ φ₂ if s ⊨ φ₁ and s ⊨ φ₂.

• s ⊨ [K]φ if for every action in the set K enabled from s, the resulting state also satisfies φ.

• s ⊨ ⟨K⟩φ if there exists at least one action in K such that the resulting state satisfies φ.

Pag. 8

This semantic interpretation allows us to rigorously define what it means for a CCS model to satisfy a

behavioral property.

Example

• Safety: “It is always possible to avoid action fail”

νX.([fail]ff ∧ [−]X)

• Reachability: “Eventually action brake will occur”

μX.(<->tt ∧ <brake>X)

In our setting, the mu-calculus is used to express properties over CCS models derived from discretized traces,

allowing us to verify if symbolic behaviors conform to expected patterns (e.g., vehicles keep safe distances,

alternate acceleration phases, or synchronize correctly).

3 Tool for indexing and data overview

To better understand and analyze the vast amount of data generated in our previous work, we designed and

implemented a robust indexing utility. This utility was developed to streamline data exploration, enhance

accessibility, and facilitate deeper insights into the simulation

traces and parameters. The utility is made of two components

a web-app that’s used to explore the simulation traces and

parameters and a Python program used to generate the web-

app's data structures.

The Python program generates the files index.html. In the

simulations’ root folder, the aforementioned file contains a

table of contents containing references to all simulation traces

and their parameters. The table itself is generated by iterating

through all traces’ folder and parsing the config.mm.json

file to get the parameters that were used by INTO-CPS to run the simulation and generate the simulation trace.

The web-app, composed by the HTML files generated by the Python program, requires a running web server

to operate properly, a script called launch.sh is made available to quickly start a web server on port 9000.

Figure 1: Listing of all roots

Pag. 9

As it is shown in Figure 1, once the web browser is pointed to the web server, we are greeted by a listing of all

simulation roots. We can click on one of them to access its table of contents. The table of contents, shown in

Figure 2, is a table in which the rows represent simulation traces. For each trace we show its name, with a

hyperlink to the trace’s root folder; hyperlinks to the generated CSV file and the configuration JSON file; and

all the trace’s parameters that were used by the simulator. Each parameter’s column has a text input box that

can be used to filter out simulation traces that do not match with the user’s query, for instance we can show

only traces that have an attack of type 1 by typing “1” in the column {Car1}.CarIstance_1.attack.

Figure 2: The table of contents

Clicking the trace’s name we are redirected to the trace’s root. In this web page we have a series of plots, an

example of them is shown in Figure 3 showing the evolution of the cars’ physical quantities against time. More

specifically, we plot the following graphs

• acceleration over time, as read by the sensors and as the actual simulation value

• speed over time, as read by the sensors and as the actual simulation value

• x position, as read by the sensors and as the actual simulation value

• inter-vehicular distance, as read by the sensors and as the actual simulation value

The plots are made at runtime using the JavaScript library Apache Echarts1 by reading the CSV file generated

by the simulator. The plots are interactive, the user can move the cursor over the traces and read the exact

value of the trace in a certain instant. It is also possible to hide traces and zoom in and out of the plot to see

the evolution of the system in greater detail.

1https://echarts.apache.org

https://echarts.apache.org/

Pag. 10

Figure 3: A graph that can be found in a trace's root

At the bottom of the page, another table shows again the trace parameters, this time arranged by row instead

of by column.

4 Tool for labeling data

Since we have generated a quite large amount of data in the form of simulation traces, it was quite difficult to

manually find the most interesting traces, in terms of attack severity. So we developed a Python program to

generate a summary of all traces and their outcome, in the form of a CSV file.

The main idea is to label, for each trace, the behavior of each car and then aggregate them to give a general

label to the trace. First, we defined 5 levels of severity ordered by the most severe to least severe as:

𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁 > 𝑉𝐼𝑂𝐿𝐴𝑇𝐼𝑂𝑁 > 𝑇𝑂𝑂𝐶𝐿𝑂𝑆𝐸 > 𝑇𝑂𝑂𝐹𝐴𝑅 > 𝑂𝐾

For each simulation step t and car i, we assign a label 𝐿(𝑖, 𝑡) computed in function of the inter-vehicular

distance 𝑑𝑖 kept between car i and the vehicle in front, as show:

𝐿(𝑖, 𝑡) =

{

𝑂𝐾 𝑖𝑓𝑑𝑖 ∈ (12,18)

𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁 𝑖𝑓𝑑𝑖 ≤ 4
𝑇𝑂𝑂𝐹𝐴𝑅 𝑖𝑓𝑑𝑖 ≥ 18
𝑇𝑂𝑂𝐶𝐿𝑂𝑆𝐸 𝑖𝑓𝑑𝑖 ≤ 12
𝑉𝐼𝑂𝐿𝐴𝑇𝐼𝑂𝑁 𝑖𝑓𝑑𝑖 ≤ 10 }

Finally, the global label for a car i and for the whole trace, using the previously mentioned ordering, is assigned

as follows:

𝐿𝑖 = 𝑚𝑎𝑥
𝑡
{𝐿(𝑖, 𝑡)}

𝐿 = 𝑚𝑎𝑥
𝑖
{𝐿𝑖}

Then we imported the CSV files in LibreOffice Calc, a spreadsheet program, and aggregated the results. The

following table shows the aggregated results:

Pag. 11

Label class No attack Attack leader
Attack on car 1

P1

Attack on car 1

P2

Attack on car 4

P1

Attack on car 4

P2

OK 100.00% 33.33% 33.33% 50.00% 33.33% 75.00%

TOO FAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TOO CLOSE 0.00% 0.00% 0.00% 50.00% 0.00% 25.00%

VIOLATION 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

COLLISION 0.00% 66.67% 66.67% 0.00% 66.67% 0.00%

TRACES 96 576 288 384 288 384

The P1 columns refer to attacks on the car’s sensors and P2 to the actuators; the leader only has attacks on

sensors. Obviously, there is no issue with the no attack scenario. We also observe that the attacks on sensors

are by far the most dangerous as they result in collisions; while attacks on actuators mainly result in a reduced

inter-vehicular distance.

5 Formal model definition and properties specification

The process of formal modeling starts from the analysis of raw numerical traces obtained from simulated

vehicular scenarios, i.e., cooperative platooning. These traces contain sampled values of continuous variables

such as acceleration, speed, and inter-vehicle distance, computed at successive time instants.

Figure 4: Complete Workflow of Our Methodology

To enable formal verification and behavioral reasoning, the pipeline transforms these numerical traces into

symbolic process models. Figure 4 shows the workflow of our methodology. It outlines the complete

transformation pipeline, starting from raw numerical traces and leading to a fully analyzable formal model.

The main stages of the methodology are as follows:

• Operational Mode Identification: The first step involves detecting the operational mode of the

platoon system (mode 0, 1, or 2), which corresponds to different vehicle coordination strategies. This

is achieved by analyzing the statistical profile of the leader vehicle over a short time window (e.g.,

average and standard deviation of acceleration) and comparing it with known mode signatures.

Pag. 12

• Discretization of Continuous Variables: For each continuous variable, the numerical domain is

partitioned into a finite number of disjoint intervals. Each interval is then associated with a symbolic

label (e.g., low, medium, high). In particular:

o Acceleration and speed are discretized based on percentile thresholds calculated from the trace

itself.

o Distance is discretized using predefined physical safety margins.

• Mapping of Numerical Traces to Symbolic Traces: Once the labels are defined, the entire numerical

trace is transformed into a symbolic sequence, where each time instant is represented by a tuple of

labels corresponding to acceleration, speed, and distance.

• Formal Translation into CCS: The symbolic trace of each vehicle is then translated into a process

using the Calculus of Communicating Systems (CCS). Each symbolic step becomes an action in the

CCS syntax. For cooperative scenarios, processes can also include synchronization points (e.g., sink,

go) to model simultaneous progression among vehicles.

• Specification of Properties in Mu-Calculus: To enable formal reasoning, behavioral properties can

be expressed using modal mu-calculus, a logic suitable for model checking over labeled transition

systems. This allows verification of safety, liveness, or coordination constraints directly over the

generated models.

This pipeline enables a systematic transition from raw numerical logs to a fully formal, analyzable

representation of cooperative vehicular behavior.

5.1 Mode Detection

In cooperative vehicular systems such as platooning, vehicles can operate under different driving strategies,

referred to as operational modes. Each mode defines a specific behavioral pattern for how the leader vehicle

drives, which in turn influences the responses of all follower vehicles. In our framework, three operational

modes are supported: mode 0, mode 1, and mode 2.

Automatic mode detection is a critical step in the modeling pipeline, as it directly influences the choice of

discretization thresholds used in subsequent steps. Each mode corresponds to a different driving profile, and

thus requires specific interval boundaries to accurately label numerical values.

Operational Modes Description

Each operational mode is designed to simulate a distinct type of leader behavior in the platoon:

Pag. 13

• Mode 0 involves a period of constant acceleration at the beginning of the simulation, followed by a

smooth oscillatory motion. This mode represents a predictable and stable driving style, suitable for

evaluating vehicle responses under regular conditions.

• Mode 1 starts with a gradual linear increase in acceleration (a ramp phase), which smoothly transitions

into the same oscillatory pattern used in mode 0. This mode models a more progressive, yet still

regular, behavior of the leader.

• Mode 2 is characterized by a periodic cycle alternating between phases of acceleration, short

oscillations, and deceleration. This behavior repeats at fixed time intervals and simulates a more

reactive or “aggressive” driving style, where the leader frequently accelerates and slows down.

These modes are not directly encoded in the trace files and must be inferred by analyzing the data itself — in

particular, the behavior of the leader vehicle.

Statistical Signature Extraction

To automatically classify a trace into one of the predefined operational modes, we extract a statistical signature

based on the behavior of the leader. Specifically, we compute the mean and standard deviation of the leader’s

real acceleration over an initial time window (typically the first 20 seconds of the trace).

This provides a simple yet informative numerical fingerprint of the leader’s behavior at the beginning of the

scenario, which is representative of the mode being simulated.

For each mode, reference signatures are precomputed using clean example traces. These signatures are stored

and used for comparison during classification.

Mode Classification Algorithm

Mode classification is performed by comparing the signature of the input trace with the reference signatures

for all known modes. We use Euclidean distance in the two-dimensional space defined by mean and standard

deviation of the leader’s acceleration.

The mode whose reference signature is closest to the input trace is selected as the most likely match.

This approach is intentionally simple and interpretable, ensuring that mode classification remains fast and

explainable.

5.2 Trace Discretization

The second key step in our modeling pipeline involves transforming continuous numerical variables into

discrete symbolic labels. This process, known as discretization, is essential for enabling formal reasoning over

system behavior, as it allows us to define models over a finite and well-defined set of actions.

Pag. 14

Discretization is applied to each relevant variable in the trace: acceleration, speed, and distance. The strategy

differs depending on the type of variable and the operational mode detected in the previous step.

Discretization Objectives and Principles

The main goals of discretization are:

• To reduce the complexity of the raw traces while preserving essential behavioral differences.

• To map numeric ranges to interpretable qualitative categories.

• To enable symbolic modeling, where each trace step becomes a finite label used in formal processes.

The discretization ensures that:

• The full domain of each variable is covered (no value is left unlabelled).

• Each interval has a unique corresponding label.

• Labels are mutually exclusive, forming a partition of the domain.

Accelerations and Speeds: Percentile-Based Labeling

For both acceleration and speed, the discretization is based on the empirical distribution of values observed in

each trace. We compute the following percentiles: 5th, 25th, 75th, and 95th, separately for each vehicle and

for each variable, over a filtered subset of physically valid values (e.g., ignoring extreme or invalid samples).

This yields six possible symbolic labels:

• non_physical_min (below physical threshold)

• extreme_low (below 5th percentile)

• low (between 5th and 25th)

• medium (between 25th and 75th)

• high (between 75th and 95th)

• extreme_high (above 95th percentile)

• non_physical_max (above physical threshold)

Each raw value is mapped to its corresponding label depending on the calculated percentiles. Since different

modes have different behavioral ranges, mode-specific thresholds are used.

Pag. 15

Distances: Threshold-Based Labeling

Distance between vehicles is discretized using fixed predefined thresholds, based on the system’s design

constraints rather than distributional properties. In the platooning context, the nominal target distance between

vehicles is 14 meters. Based on acceptable deviations, we define the following distance categories:

• critical_low (distance < 12.0 m) – critically short inter-vehicle distance

• low (12.0 m ≤ distance < 13.5 m) – short but acceptable distance

• optimal (13.5 m ≤ distance < 14.5 m) – ideal distance for platooning

• high (14.5 m ≤ distance ≤ 16.0 m) – slightly extended but still safe

• critical_high (distance > 16.0 m) – overly large inter-vehicle separation

This discretization captures meaningful deviations from the expected safe inter-vehicle distance and supports

the detection of abnormal or unstable formations.

Mode-Specific Boundaries

While distance discretization uses fixed thresholds, acceleration and speed labeling is mode dependent. Each

operational mode has its own statistical characteristics, which influence the percentile values. To ensure

consistency, the boundaries used for discretization are:

• Automatically computed during preprocessing

• Stored per mode in a reference dictionary

• Used uniformly across all vehicles in each trace

This guarantees that the symbolic interpretation of high speed or medium acceleration, for example, is

consistent with the mode's expected dynamics. After discretization, each time step of each vehicle's trace is

represented as a symbolic tuple, and an example of this symbolic trace mapping is reported in Table 1.

Table 1: Example of symbolic trace after discretization of acceleration, speed, and inter-vehicle distance.

Time Car ID Acceleration Speed Distance to Preceding Vehicle

0.0 CAR_X medium low nominal

0.1 CAR_X high medium nominal

0.2 CAR_X extreme_high high too_close

… … … … …

Pag. 16

5.3 Formal Model Generation

This step generates a formal model by using the symbolic representations of the vehicular traces obtained in

the previous discretization phase. For each vehicle involved in the platoon, the acceleration, speed, and distance

variables are mapped into symbolic labels. These labels are then translated into CCS processes, representing

the behavior of each vehicle over time.

The CCS model is defined over a finite set of symbolic actions, one for each discretized variable at each time

point. Each process represents the behavior of a single vehicle, encoded as a sequence of synchronized or

unsynchronized actions.

Symbolic Trace Encoding

Once the operational mode is detected and discretization bounds are applied, each row of the numerical trace

is mapped to a symbolic triple of the form:

[label_acceleration].[label_speed].[label_distance]

where each label corresponds to the symbolic category assigned to the respective value. An example is shown

in Table 2, representing a symbolic trace for one vehicle over three-time steps.

Table 2: Example of a discretized symbolic trace for a single vehicle.

Time Acceleration Speed Distance to Preceding Vehicle

t0 medium low optimal

t1 high medium low

t2 extreme_high high critical_low

Each row is translated into a CCS process step. The resulting process captures the step-by-step behavior of the

vehicle, representing its acceleration, speed, and distance as a sequence of symbolic actions.

A separate CCS process is constructed for each vehicle. The process is defined as a chain of states, one per

time instant. Each state executes a compound action (concatenation of labels), and transitions to the next

process in the sequence.

Let us consider vehicle CAR1, with its symbolic trace shown in Table 2. In the following we report the

corresponding CCS specification.

Pag. 17

proc CAR1_T0 = acc_medium.speed_low.dist_optimal.CAR1_T1

proc CAR1_T1 = acc_high.speed_medium.dist_low.CAR1_T2

proc CAR1_T2 = acc_extreme_high.speed_high.dist_critical_low.nil

This process models the complete evolution of the vehicle from start to termination, based solely on its

behavior in the trace.

Synchronization of Cooperative Vehicles

In cooperative settings such as platooning, vehicles operate in coordination. To model such behavior, we

introduce a synchronization mechanism using dedicated CCS actions (sink, go). These actions are used to align

the execution of different vehicle processes at each simulation time step.

To implement synchronization:

• Each vehicle process emits a synchronization action (sinkX, goX) before progressing.

• An auxiliary process SINK coordinates all sink/go actions in order and loops infinitely.

• A top-level process ALL puts all vehicle processes in parallel and hides synchronization actions.

Example:

proc SINK = 'sink0.'sink1.'sink2.'go0.'go1.'go2.SINK

proc ALL = (CAR3_T0 | CAR4_T0 | CAR5_T0 | SINK) \ {sink0, sink1, sink2, go0, go1,

go2}

This structure ensures that vehicles advance in lock-step, reflecting real-time coordination as in the simulated

platoon. The generated CCS models can now be used for formal verification. Properties describing safe

distances, behavioral regularities, or synchronization invariants can be expressed in modal mu-calculus and

checked against the model. This modeling approach enables a full pipeline from raw simulation data to

verifiable formal specifications.

5.4 Property Specification

Cooperative vehicular systems such as platooning rely on strict coordination and safe distance keeping between

vehicles. Given the high degree of automation involved, ensuring that the system adheres to behavioral

constraints is essential, particularly in the presence of faults or attacks.

Compared to black-box machine learning approaches, the use of explicit symbolic properties allows for

interpretable diagnostics and verifiable safety guarantees. By inspecting whether each property holds over the

Pag. 18

system traces, engineers can identify precise points of failure, explain them in domain-specific terms, and

define corrective measures that are formally justified.

However, raw numeric traces alone are often difficult to interpret due to signal noise and temporal variability.

To overcome this, we apply a symbolic discretization process to map continuous variables — such as

acceleration, speed, and inter-vehicular distance — into qualitative labels. This abstraction enables clearer

analysis and supports the definition of properties over symbolic traces that highlight behaviorally meaningful

patterns. In this way, symbolic modeling acts as a bridge between low-level data and high-level reasoning,

enabling both formal verification and practical anomaly detection.

To better understand when and how such violations can occur, we analyze the evolution of key behavioral

variables — acceleration, speed, and inter-vehicular distance — using both raw data and their symbolic

(discretized) counterparts.

Figure 5: Acceleration profiles of the platoon under an example attack.

Errore. L'origine riferimento non è stata trovata. shows the acceleration profile of all vehicles in a scenario a

ffected by an example attack. Around timestamp 60 seconds, Car1 exhibits an abnormal drop in acceleration,

while the leader vehicle maintains a stable behavior. This divergence is indicative of an unintended or

malicious event. Such anomalies motivate the definition of high-level properties that can be used to detect,

explain, or prevent undesired behaviors.

From the analysis of both normal and attack scenarios, we derive a set of relevant properties. These properties

are described informally in natural language and reflect the key safety and coordination rules that the system

should follow. Errore. L'origine riferimento non è stata trovata. shows the derived properties.

Pag. 19

Table 3: Set of symbolic properties for safety derived from trace analysis.

Property ID Description

P1 – Distance Violation
A vehicle should not remain in a critical low distance state for more

than five consecutive time steps.

P2 – Acceleration Misalignment
If a follower vehicle changes its acceleration and the leader remains

stable, this must not cause the distance to become critical low.

P3 – Consistent Speed Transitions
Transitions from high to low speed must be followed by a

corresponding reduction in acceleration.

P4 – Synchronous Behavior

All vehicles in the platoon should undergo synchronous or

coordinated changes in acceleration under normal operating

conditions.

P5 – Anomaly Detection

A sudden and isolated change in acceleration of a follower vehicle,

not justified by traffic or leader behavior, must be flagged as

potentially unsafe.

For instance, in one of the analyzed attack traces, Car1 abruptly changes its acceleration at timestamp 60,

while the leader remains in a steady state. This causes the distance to shrink dangerously, violating Property

P2 – Acceleration Misalignment. This concrete example shows how symbolic representations help detect

subtle coordination failures before they escalate into safety hazards.

These properties capture both invariant requirements (e.g., P1) and causal dependencies (e.g., P2 and P5)

observed in the system's behavior. While we express them in informal terms, they are grounded in the symbolic

traces derived from real simulations and serve as the basis for further formal verification and anomaly detection

tasks. These properties are designed to be generic and data-driven: they apply to any discretized vehicular trace

and can be used both for validation during model checking and as diagnostic rules during trace inspection. In

particular, these properties could also be embedded into runtime monitors, enabling automatic validation of

vehicle behavior during simulations or live operations. Their symbolic structure ensures that the conditions

they capture are both interpretable and enforceable, contributing to the transparency, reliability, and

trustworthiness of cooperative driving systems.

We resort to the Concurrency Workbench of New Century (CWB-NC) [Clev96] formal verification

environment.

Pag. 20

5.5 Explainability

The proposed methodology enhances explainability by transforming raw numerical traces into symbolic

sequences. Each continuous feature — acceleration, speed, and inter-vehicular distance — is mapped to a finite

set of semantically meaningful labels (e.g., critical_low, optimal, extreme_high) using either percentile-based

discretization or rule-driven thresholds. This transformation bridges the gap between low-level sensor data and

high-level reasoning, enabling domain experts to interpret vehicle behavior without inspecting raw numeric

logs. Compared to black-box machine learning approaches, this symbolic abstraction provides a transparent

and interpretable representation of system dynamics. Abnormal behavior patterns — such as sudden changes

in acceleration or prolonged critical distances — can be detected and explained in human-readable terms,

supporting both offline analysis and operational monitoring.

Moreover, behavioral constraints can be formalized directly over symbolic labels, using either informal rules

or temporal logics such as μ-calculus. This provides several advantages:

• Traceability: property violations can be precisely located in the trace and linked to concrete symbolic

events.

• Debugging and validation: engineers can analyze transitions over time (e.g., a change from medium

to extreme_low acceleration) to understand deviations from nominal behavior.

• Property specification: formulating behavioral properties is facilitated, as symbolic labels provide a

meaningful vocabulary for expressing conditions (e.g., “a vehicle should not remain in critical_low

distance for more than five steps”).

5.6 On-line test generation

In addition, the symbolic representation enables automatic runtime monitoring. Rule-based monitors can

operate over symbolic sequences and detect potential violations of coordination or safety constraints in real

time. For example, a simple automaton could trigger a warning when a follower vehicle changes acceleration

while the leader remains stable and the distance drops to critical_low. Finally, this framework is compatible

with hybrid approaches. Statistical anomaly detectors or learning-based classifiers can operate in tandem with

symbolic rules. For instance, clusters of anomalous behavior identified by machine learning can be mapped

back to symbolic traces for interpretation, validation, and formal verification.

By enabling interpretable diagnostics, trace-based reasoning, and formally verifiable properties, our method

serves as a foundational tool for ensuring the safety and trustworthiness of cooperative vehicular systems.

Pag. 21

6 Stochastic model checking for analysis on critical traces

The approach based on statistical model checking [Legacy10] uses the formalism of timed automata to

model the platoon. We use the framework UPPAAL SMC [Behr04].

A timed automaton consists of a set of states and transitions, and real-valued variables for measuring time

between transitions, named clocks. The general form of a transition consists of a guard, a synchronization

and an assignment to clocks and variables. States are also named locations. Invariants can be added to

locations to specify timing constraints on leaving the locations. The behavior of the automaton evolves

from the initial location. One of the main advantages of using statistical model checking is that we can

study the behavior of the system under a wide range of parameters. For instance, we can assume the

acceleration time of a vehicle being drawn from a uniform distribution with lower and upper bound of 5

and 10, respectively. Such an approach allows us to test the probability of a certain property being true in

case – generally speaking – the accelation of the car is in the continuous range from 5 to 10.

Consider the simple system, composed by a car and a driving pattern. The system moves according to a

given driving scenario and imposes the acceleration on the car.

Figure 6: A simple car system

The car is represented by the automaton Car. The acceleration imposed on Car is represented by the

automaton Driver. The acceleration is defined by a global variable a, set by the Driver. The clock

variable t defines interleaving time between transitions.

The automaton Car consists of a single location DYNAMICS. The car's speed and position are modeled

by two clocks x and v, which are used to model the physics via the Lagrangian derivative notation. In

particular, the state has an invariant that consists of the conjunction of the following two formulae: the

acceleration is always equal to the derivative of the velocity; and the velocity is always equal to the

derivative of the position.

The automaton Driver consists of three locations (INIT, ACCEL and DECEL). The driver's behavior is

modeled as follows. INIT is the initial location. The first transition is enabled and set the acceleration to

Pag. 22

a = 1 m/sec2. The location INIT is marked with a C that stands for committed, time is not allowed to pass

when a process is in a committed location. It forces the automaton to transition to state ACCEL and assigns

a:=1 immediately.

Then, the invariant (t<=6) assigned to location ACCEL and the guard (t>=3) assigned to the transition

exiting such location, guarantee that the transition between ACCEL and DECEL is executed in the time

range [3,6]. The execution of the transition assigns a new value equal to -1 m/sec2 to the global variable

a (a:=-1) and the clock t is reset to 0. A similar behavior is exhibited when the system is in location

DECEL (state invariant (t<=5); and guard (t>=2.5)). The Driver alternates an acceleration period of

length T_A in the range [3,6] with a = 1 m/sec2and a deceleration period of length T_D in the range

[2.5,5] with a = -1 m/sec2.

During the evolution of the systems, whenever a transition is executed, all clocks are evaluated. In

particular, all clocks are updated, and the car's automaton updates the velocity and position of the car.

6.1 Modeling a platoon

Let us consider a reduced version of the platoon with the leader only 3 follower cars, we model the system

using 7 templates of automata, as shown in Figure 7.

Figure 7: Components of a platoon.

Templates of automata

Car’s physics, sensors and attacks, this template implements the physics and the attacks on a single car. We

have 4 instances of this template – one for the leader and three for the followers. Shown in Figure 8.

Leader’s driver, this template implements the driving behavior of the leader car.

Pag. 23

CACC controller, this template implements the CACC controller, there are 3 instances of this template – one

for each follower.

CACC clock, this automaton ties together the CACC instances.

Network uplink and downlink, these templates are used to implement the network delays between the CACC

controllers and the platoon.

Modeling attacks. The system model is extended with the injection of attacks by adding the effects of the

attacks on the behaviour of the system. We consider attacks that add spurious signals to data sent by the car to

other vehicles (V2V platoon) or to controller at the edge (V2E platoon). Attacks that affect data sent back by

the controller to cars can be modeled in a similar way.

Clocks modeling data that have been altered by an attack are used to model attacks in the platoon. There are

six clocks for each car:

a_p[i], v_p[i], x_p[i] that represent the real physical quantities; and

a[i], v[i], x[i] that are used to model attacks in the platoon. They represent the value actually sent by

the car to the other vehicles or to the remote controller.

The attack is characterized by a starting time and by an amplitude parameter. Let attack_time be the time

at which the attack starts.

The global variable A represents the data alteration attack with amplitude A.

Let N_CARS be the number of cars in the platoon. A vector crashed[N_CARS] is used, whose i-th element is

set to true after the i-th car has either rear-ended or has been rear-ended.

Let us consider the case of a low-frequency sinusoidal attack of 1 Hertz of frequency and of amplitude A in

[-0.1, +0.1], applied to real acceleration value a(t) --- the coefficient 2/10 is the frequency expressed in

radians per second. In the example, we assume the acceleration, velocity and position values are modified

coherently, assuring that the relation x'=v, v'=a holds true. Additionally, for the velocity, a small bias

coefficient (5/)A is introduced. The problem is made interesting by the signal's construction, which is

designed to be difficult for an external observer to detect.

The Car model is shown in Figure 8. There are four states:

- WAIT. Location WAIT represents the car waiting for its time to start moving after start_time

seconds. STOP ALL LOCAL CLOCKS is the state invariant in which all clocks modeling the physics

are stopped by imposing their prime derivatives to zero, that is x'==0 && v'==0 && etc.

Pag. 24

- DYNAMICS. Location DYNAMICS models the time evolution of the vehicle given the input signal

desired acceleration u. NOMINAL DYNAMICS is the state invariant that models the physics of the

running car. Being in location DYNAMICS, if attack_time=+infinity then no attack takes place

as the guard t_sim>=attack_time of the transition from location DYNAMICS to

DYNAMICS_ATTACK is always false. When an attack starts, such transition updates clocks

according to the effects of the attack on velocity and position.

- DYNAMICS_ATTACK. Location DYNAMICS_ATTACK is the same as the former but with the attack.

ATTACK DYNAMICS is the state invariant in which the clock rate of attacked values are altered

according to the attack.

- CRASH. The location CRASH represents a crash with another vehicle STOP ALL LOCAL CLOCKS

is the state invariant and it is the same as the location WAIT.

More details are reported in [Bern25].

Figure 8: Car model in presence of possible attacks

Pag. 25

6.2 Modeling system’s properties

Using UPPAAL SMC we can compute, for example, the probability of an attack having a significant effect on

the distance between two adjacent cars within the first 10 seconds. This might be useful in understanding how

much time a threat detector might have to properly detect the threat and handle it.

We formalized the statement with the following formula, where the attack starts at

30s, and the property must hold for any pair of consecutive (adjacent) vehicles:

𝑃 (∀𝑡: 30s ≤ 𝑡  ≤  40s    ⇒  ∀𝑖 𝜀𝑖  <  0.15)

where 𝜀𝑖 represents the difference between the desired distance of 11 meters and the actual distance between

vehicle i and vehicle i-1 , 𝑡 is the simulation time and imply operator ⇒ is used to check the condition ∀𝑖 𝜀𝑖  <

 0.15 within the time interval 𝑡  ∈ [30,  40] .

In the UPPAAL query language, it becomes the following, where the desired distance is 11 meters and 4

meters is the length of a vehicle:

Pr[t_sim <= 40] ([] t_sim >= 30 imply

 forall(i : int[1, 3]) fabs(((x_p[i-1] - x_p[i] - 4) – 11) /11) < 0.15)

where:

• The Pr[clock <= T](expr) instructs the UPPAAL query engine to compute the probability of

expr being true while the condition on a clock clock holds true

• The [] keyword says the property holds for the entire considered duration

• The imply keyword implements the material conditional ⇒

• The forall(values) expr(i) construct checks the expr(i) for all i in the list values

• The fabs(x) function computes the absolute value of a floating-point number

We made the simulation parametric in the attack amplitude A and we varied such parameter between –0.1 and

0.1 with step 0.002. We ran the query setting a confidence interval of 95%. The results are shown in the graph

in Figure 9.

Figure 9: Probability of error distance  𝜀𝑖   <  0.15 within the time interval 𝑡  ∈ [30,  40] for any vehicle

Pag. 26

For very small values of A the probability is 0, meaning that the attack has no effect in the short period; whereas

larger values make the system more prone to leave the safe zone and can be easily detected.

7 Roadmap for future work

This deliverable reports on the methodology defined in WP3 to build formal models from behavioral traces

and the identification of properties to detect attacks in the platoon. In the next tasks of WP3, the methodology

will be validated using scenarios on simple cases; and successively, the methodology will be validated on the

platooning use case.

Bibliography

[Clarke01] Clarke, E. M., Grumberg, O., and Peled, D. A. “Model Checking”, MIT Press, 2001. [Online].

Available: http://books.google.de/books?id=Nmc4wEaLXFEC

[Mil89] Milner, R. “Communication and concurrency”, ser. PHI Series in computer science. Prentice Hall,

1989.

[Koz83] D. Kozen, D. “Results on the propositional mu-calculus,” Theor. Comput. Sci., vol. 27, pp. 333–354,

1983. [Online]. Available: http://dx.doi.org/10.1016/0304-3975(82)90125-6

[Clev96] R. Cleaveland and S. Sims, “The NCSU concurrency workbench,” in Computer Aided Verification,

8th International Conference, Proc. CAV’96, New Brunswick, NJ, USA, 1996, pp. 394–397. [Online].

Available: https://doi.org/10.1007/3-540-61474-5n 87

[Legay10] Legay, B. Delahaye, and S. Bensalem. “Statistical model checking: An overview,” in Runtime

Verification (H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace, G. Ro¸su, O. Sokolsky,

and N. Tillmann, eds.), (Berlin, Heidelberg), pp. 122–135, Springer Berlin Heidelberg, 2010.

[Behr04] Behrmann, G. and David, A. and Larsen, K. G. “A Tutorial on UPPAAL”, Formal Methods for the

Design of Real-Time Systems: International School on Formal Methods for the Design of Computer,

Communication, and Software Systems, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, Springer,

2004, pp. 200–236. DOI=10.1007/978-3-540-30080-9_7

[Bern25] Bernardeschi, C., Fagiolini, A., Pagani, D., and Quadri, C. “Statistical Model Checking for the

Analysis of Attacks in Connected Autonomous Vehicles”, Proc. 10th IEEE International Workshop on Cyber-

Physical Systems Security, CPS-Sec 2025, Sept. 2025, France (to appear)

http://dx.doi.org/10.1016/0304-3975(82)90125-6

