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1 Introduction 

         This deliverable describes the methodology defined in WP3 to build a formal model for vehicular 

behavioral traces, starting from co-simulations logs produced in WP2; and to identify on-line tests for attack 

detection, starting from labeling of data related to the position of cars (e.g, too far or too close),  and labeling 

of the trace (e.g., no attack, attack to the leader, or attack to car i).  Moreover, stochastic model checking has 

been used to analyse, for example, the probability of an attack having a significant effect on the distance 

between cars, within a very short period of time.  

In particular, the formal model of behavioral traces is built starting from processes expressed in the CCS 

process algebras in Task T3.1; then in Task T3.2 patterns for detection of attacks are identified and in T3.3 

they are formalized in mu-calculus temporal logic; finally in Task T3.5 explainability of the proposed approach 

is analysed.  

2 Background 

In the following sections, we provide the necessary background to support the methodology presented in this 

project. We introduce the key concepts and formal foundations related to process modeling, symbolic trace 

abstraction, and formal verification through model checking. 

2.1 Model Checking for Behavioral Verification 

Formal verification techniques, and in particular model checking [Clarke99], offer a systematic approach to 

verifying properties of system behavior by exhaustively exploring all possible execution paths of a formal 

model. This technique proves especially useful in safety-critical contexts such as cooperative vehicular 

systems, where ensuring adherence to specific behavioral constraints is essential. 

In our methodology, the behavior of each vehicle is encoded as a process in the Calculus of Communicating 

Systems (CCS) [Mil89], a well-established process algebra that allows for the representation of concurrent 

systems. These CCS models are then subject to model checking, using modal mu-calculus [Koz83] as the 

specification language for properties of interest. 

The mu-calculus is a powerful formalism capable of expressing a wide range of temporal and modal properties, 

including reachability, safety, liveness, and synchronization conditions. For example, properties can express 

constraints such as: “A vehicle never enters a critical state of proximity for more than two consecutive time 

steps” or “Acceleration and deceleration patterns alternate consistently under normal driving conditions”.  
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Model checking is the automatic verification of whether a transition system satisfies a temporal logic formula. 

By systematically exploring all reachable states of the system, it checks the validity of the specified properties 

and ensures that the modeled behavior adheres to expected rules. 

In our methodology, model checking enables the automated validation of behavioral properties over the entire 

symbolic model derived from real vehicular traces, serving as a rigorous bridge between simulation data and 

formal safety assurance. Specifically, it allows us to: 

• Validate that symbolic traces follow safe behavioral patterns (e.g., avoiding critical low distances). 

• Detect violations of coordination rules (e.g., ensuring that all vehicles synchronize at each time step). 

• Formally verify that the modeled platoon dynamics comply with the intended operational modes. 

 

2.1.2 Calculus of Communicating Systems (CCS) 

The Calculus of Communicating Systems (CCS) is a process algebra introduced by Robin Milner to formally 

model and reason about concurrent systems. In CCS, system behavior is described in terms of processes that 

perform actions, possibly in parallel and with synchronization. Each process is defined recursively, using a set 

of syntactic constructors. The basic syntax of CCS is as follows: 

P ::= nil   -- the inactive process 

    | a.P   -- action prefix (a followed by P) 

    | P + Q   -- choice (non-deterministic) 

    | P | Q   -- parallel composition 

    | P \ L   -- restriction (hiding of actions in L) 

    | A   -- process identifier (with definition A  P) 

where: 

• a is an action, which can be either observable (e.g., send, receive) or internal (denoted by ). 

• P and Q are processes. 

• L is a set of actions to be hidden (restricted). 

Example 

A simple process that sends a message and then terminates is written as: 

𝑃 =  𝑠𝑒𝑛𝑑. 𝑛𝑖𝑙 
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Two processes that communicate via complementary actions 𝑎 and 𝑎̅ can synchronize: 

𝑃 =  𝑎. 𝑛𝑖𝑙         𝑄 =  𝑎̅. 𝑛𝑖𝑙        𝑃 | 𝑄 →  𝜏 

In our context, each vehicle is modeled as a CCS process, where actions encode symbolic labels of 

acceleration, speed, and distance. The full platoon is modeled as the parallel composition of all vehicles, 

possibly with synchronization enforced via additional coordination actions (e.g., sink, go). 

2.1.3 Mu-Calculus for Property Specification 

To specify and verify properties over CCS models, we use the mu-calculus, a highly expressive logic that extends 

modal logic with least (µ) and greatest (ν) fixed points. This makes it particularly well-suited for expressing properties 

over potentially infinite behaviors, such as safety, liveness, and reachability. 

Syntax of mu-calculus 

Given a set of actions Act and propositional variables X, the syntax of modal mu-calculus formulas is: 

φ ::= tt | ff  -- constants 

     | X   -- propositional variable 

     | φ ∧ φ | φ ∨ φ -- conjunction/disjunction 

     | [a]φ | <a>φ -- box and diamond modalities 

     | μX.φ | νX.φ  -- least and greatest fixed point 

• [a]φ: For all executions of action a, φ holds afterward. 

• <a>φ: There exists an execution of action a after which φ holds. 

• μX.φ: The least fixed point — used to express eventuality (e.g., “the possibility of reaching a good 

state”). 

• νX.φ: The greatest fixed point — used for invariants (e.g., “always avoid unsafe state”). 

Satisfaction Semantics 

The satisfaction of a formula φ by a state s of a transition system (denoted s ⊨ φ) is defined inductively: 

• every state satisfies tt; no state satisfies ff. 

• s ⊨ φ₁ ∨ φ₂ if s ⊨ φ₁ or s ⊨ φ₂. 

• s ⊨ φ₁ ∧ φ₂ if s ⊨ φ₁ and s ⊨ φ₂. 

• s ⊨ [K]φ if for every action in the set K enabled from s, the resulting state also satisfies φ. 

• s ⊨ ⟨K⟩φ if there exists at least one action in K such that the resulting state satisfies φ. 



 

Pag. 8 

 

This semantic interpretation allows us to rigorously define what it means for a CCS model to satisfy a 

behavioral property. 

Example 

• Safety: “It is always possible to avoid action fail” 

νX.([fail]ff ∧ [−]X) 

• Reachability: “Eventually action brake will occur” 

μX.(<->tt ∧ <brake>X) 

In our setting, the mu-calculus is used to express properties over CCS models derived from discretized traces, 

allowing us to verify if symbolic behaviors conform to expected patterns (e.g., vehicles keep safe distances, 

alternate acceleration phases, or synchronize correctly). 

3 Tool for indexing and data overview 

To better understand and analyze the vast amount of data generated in our previous work, we designed and 

implemented a robust indexing utility. This utility was developed to streamline data exploration, enhance 

accessibility, and facilitate deeper insights into the simulation 

traces and parameters. The utility is made of two components 

a web-app that’s used to explore the simulation traces and 

parameters and a Python program used to generate the web-

app's data structures. 

The Python program generates the files index.html. In the 

simulations’ root folder, the aforementioned file contains a 

table of contents containing references to all simulation traces 

and their parameters. The table itself is generated by iterating 

through all traces’ folder and parsing the config.mm.json 

file to get the parameters that were used by INTO-CPS to run the simulation and generate the simulation trace. 

The web-app, composed by the HTML files generated by the Python program, requires a running web server 

to operate properly, a script called launch.sh is made available to quickly start a web server on port 9000.   

 

 

 

Figure 1: Listing of all roots 
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As it is shown in Figure 1, once the web browser is pointed to the web server, we are greeted by a listing of all 

simulation roots. We can click on one of them to access its table of contents. The table of contents, shown in 

Figure 2, is a table in which the rows represent simulation traces. For each trace we show its name, with a 

hyperlink to the trace’s root folder; hyperlinks to the generated CSV file and the configuration JSON file; and 

all the trace’s parameters that were used by the simulator. Each parameter’s column has a text input box that 

can be used to filter out simulation traces that do not match with the user’s query, for instance we can show 

only traces that have an attack of type 1 by typing “1” in the column {Car1}.CarIstance_1.attack. 

 

 

 

 

Figure 2: The table of contents 

 

 

Clicking the trace’s name we are redirected to the trace’s root. In this web page we have a series of plots, an 

example of them is shown in Figure 3 showing the evolution of the cars’ physical quantities against time. More 

specifically, we plot the following graphs 

• acceleration over time, as read by the sensors and as the actual simulation value 

• speed over time, as read by the sensors and as the actual simulation value 

• x position, as read by the sensors and as the actual simulation value 

• inter-vehicular distance, as read by the sensors and as the actual simulation value 

The plots are made at runtime using the JavaScript library Apache Echarts1 by reading the CSV file generated 

by the simulator. The plots are interactive, the user can move the cursor over the traces and read the exact 

value of the trace in a certain instant. It is also possible to hide traces and zoom in and out of the plot to see 

the evolution of the system in greater detail. 

 

1https://echarts.apache.org 

https://echarts.apache.org/
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Figure 3: A graph that can be found in a trace's root 

At the bottom of the page, another table shows again the trace parameters, this time arranged by row instead 

of by column. 

4 Tool for labeling data 

Since we have generated a quite large amount of data in the form of simulation traces, it was quite difficult to 

manually find the most interesting traces, in terms of attack severity. So we developed a Python program to 

generate a summary of all traces and their outcome, in the form of a CSV file. 

The main idea is to label, for each trace, the behavior of each car and then aggregate them to give a general 

label to the trace. First, we defined 5 levels of severity ordered by the most severe to least severe as: 

𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁 > 𝑉𝐼𝑂𝐿𝐴𝑇𝐼𝑂𝑁 > 𝑇𝑂𝑂𝐶𝐿𝑂𝑆𝐸 > 𝑇𝑂𝑂𝐹𝐴𝑅 > 𝑂𝐾 

For each simulation step t and car i, we assign a label 𝐿(𝑖, 𝑡) computed in function of the inter-vehicular 

distance 𝑑𝑖 kept between car i and the vehicle in front, as show: 

𝐿(𝑖, 𝑡) =

{
 
 

 
 

𝑂𝐾 𝑖𝑓𝑑𝑖 ∈ (12,18)

𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁 𝑖𝑓𝑑𝑖 ≤ 4
𝑇𝑂𝑂𝐹𝐴𝑅 𝑖𝑓𝑑𝑖 ≥ 18
𝑇𝑂𝑂𝐶𝐿𝑂𝑆𝐸 𝑖𝑓𝑑𝑖 ≤ 12
𝑉𝐼𝑂𝐿𝐴𝑇𝐼𝑂𝑁 𝑖𝑓𝑑𝑖 ≤ 10 }

 
 

 
 

 

 

Finally, the global label for a car i and for the whole trace, using the previously mentioned ordering, is assigned 

as follows: 

𝐿𝑖 = 𝑚𝑎𝑥
𝑡
{𝐿(𝑖, 𝑡)}

𝐿 = 𝑚𝑎𝑥
𝑖
{𝐿𝑖}

 

Then we imported the CSV files in LibreOffice Calc, a spreadsheet program, and aggregated the results. The 

following table shows the aggregated results: 
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Label class No attack Attack leader 
Attack on car 1 

P1 

Attack on car 1  

P2 

Attack on car 4 

P1 

Attack on car 4 

P2 

OK 100.00% 33.33% 33.33% 50.00% 33.33% 75.00% 

TOO FAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

TOO CLOSE 0.00% 0.00% 0.00% 50.00% 0.00% 25.00% 

VIOLATION 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

COLLISION 0.00% 66.67% 66.67% 0.00% 66.67% 0.00% 

# TRACES 96 576 288 384 288 384 

 

The P1 columns refer to attacks on the car’s sensors and P2 to the actuators; the leader only has attacks on 

sensors. Obviously, there is no issue with the no attack scenario. We also observe that the attacks on sensors 

are by far the most dangerous as they result in collisions; while attacks on actuators mainly result in a reduced 

inter-vehicular distance. 

5 Formal model definition and properties specification 

The process of formal modeling starts from the analysis of raw numerical traces obtained from simulated 

vehicular scenarios, i.e., cooperative platooning. These traces contain sampled values of continuous variables 

such as acceleration, speed, and inter-vehicle distance, computed at successive time instants. 

 

Figure 4: Complete Workflow of Our Methodology 

To enable formal verification and behavioral reasoning, the pipeline transforms these numerical traces into 

symbolic process models. Figure 4 shows the workflow of our methodology. It outlines the complete 

transformation pipeline, starting from raw numerical traces and leading to a fully analyzable formal model. 

The main stages of the methodology are as follows: 

• Operational Mode Identification: The first step involves detecting the operational mode of the 

platoon system (mode 0, 1, or 2), which corresponds to different vehicle coordination strategies. This 

is achieved by analyzing the statistical profile of the leader vehicle over a short time window (e.g., 

average and standard deviation of acceleration) and comparing it with known mode signatures. 
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• Discretization of Continuous Variables: For each continuous variable, the numerical domain is 

partitioned into a finite number of disjoint intervals. Each interval is then associated with a symbolic 

label (e.g., low, medium, high). In particular:  

o Acceleration and speed are discretized based on percentile thresholds calculated from the trace 

itself.  

o Distance is discretized using predefined physical safety margins. 

• Mapping of Numerical Traces to Symbolic Traces: Once the labels are defined, the entire numerical 

trace is transformed into a symbolic sequence, where each time instant is represented by a tuple of 

labels corresponding to acceleration, speed, and distance. 

• Formal Translation into CCS: The symbolic trace of each vehicle is then translated into a process 

using the Calculus of Communicating Systems (CCS). Each symbolic step becomes an action in the 

CCS syntax. For cooperative scenarios, processes can also include synchronization points (e.g., sink, 

go) to model simultaneous progression among vehicles. 

• Specification of Properties in Mu-Calculus: To enable formal reasoning, behavioral properties can 

be expressed using modal mu-calculus, a logic suitable for model checking over labeled transition 

systems. This allows verification of safety, liveness, or coordination constraints directly over the 

generated models. 

This pipeline enables a systematic transition from raw numerical logs to a fully formal, analyzable 

representation of cooperative vehicular behavior. 

5.1 Mode Detection 

In cooperative vehicular systems such as platooning, vehicles can operate under different driving strategies, 

referred to as operational modes. Each mode defines a specific behavioral pattern for how the leader vehicle 

drives, which in turn influences the responses of all follower vehicles. In our framework, three operational 

modes are supported: mode 0, mode 1, and mode 2. 

Automatic mode detection is a critical step in the modeling pipeline, as it directly influences the choice of 

discretization thresholds used in subsequent steps. Each mode corresponds to a different driving profile, and 

thus requires specific interval boundaries to accurately label numerical values. 

Operational Modes Description 

Each operational mode is designed to simulate a distinct type of leader behavior in the platoon: 
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• Mode 0 involves a period of constant acceleration at the beginning of the simulation, followed by a 

smooth oscillatory motion. This mode represents a predictable and stable driving style, suitable for 

evaluating vehicle responses under regular conditions. 

• Mode 1 starts with a gradual linear increase in acceleration (a ramp phase), which smoothly transitions 

into the same oscillatory pattern used in mode 0. This mode models a more progressive, yet still 

regular, behavior of the leader. 

• Mode 2 is characterized by a periodic cycle alternating between phases of acceleration, short 

oscillations, and deceleration. This behavior repeats at fixed time intervals and simulates a more 

reactive or “aggressive” driving style, where the leader frequently accelerates and slows down. 

These modes are not directly encoded in the trace files and must be inferred by analyzing the data itself — in 

particular, the behavior of the leader vehicle. 

Statistical Signature Extraction 

To automatically classify a trace into one of the predefined operational modes, we extract a statistical signature 

based on the behavior of the leader. Specifically, we compute the mean and standard deviation of the leader’s 

real acceleration over an initial time window (typically the first 20 seconds of the trace). 

This provides a simple yet informative numerical fingerprint of the leader’s behavior at the beginning of the 

scenario, which is representative of the mode being simulated. 

For each mode, reference signatures are precomputed using clean example traces. These signatures are stored 

and used for comparison during classification. 

Mode Classification Algorithm 

Mode classification is performed by comparing the signature of the input trace with the reference signatures 

for all known modes. We use Euclidean distance in the two-dimensional space defined by mean and standard 

deviation of the leader’s acceleration. 

The mode whose reference signature is closest to the input trace is selected as the most likely match. 

This approach is intentionally simple and interpretable, ensuring that mode classification remains fast and 

explainable. 

5.2 Trace Discretization 

The second key step in our modeling pipeline involves transforming continuous numerical variables into 

discrete symbolic labels. This process, known as discretization, is essential for enabling formal reasoning over 

system behavior, as it allows us to define models over a finite and well-defined set of actions. 
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Discretization is applied to each relevant variable in the trace: acceleration, speed, and distance. The strategy 

differs depending on the type of variable and the operational mode detected in the previous step. 

Discretization Objectives and Principles 

The main goals of discretization are: 

• To reduce the complexity of the raw traces while preserving essential behavioral differences. 

• To map numeric ranges to interpretable qualitative categories. 

• To enable symbolic modeling, where each trace step becomes a finite label used in formal processes. 

The discretization ensures that: 

• The full domain of each variable is covered (no value is left unlabelled). 

• Each interval has a unique corresponding label. 

• Labels are mutually exclusive, forming a partition of the domain. 

Accelerations and Speeds: Percentile-Based Labeling 

For both acceleration and speed, the discretization is based on the empirical distribution of values observed in 

each trace. We compute the following percentiles: 5th, 25th, 75th, and 95th, separately for each vehicle and 

for each variable, over a filtered subset of physically valid values (e.g., ignoring extreme or invalid samples). 

This yields six possible symbolic labels: 

• non_physical_min (below physical threshold) 

• extreme_low (below 5th percentile) 

• low (between 5th and 25th) 

• medium (between 25th and 75th) 

• high (between 75th and 95th) 

• extreme_high (above 95th percentile) 

• non_physical_max (above physical threshold) 

Each raw value is mapped to its corresponding label depending on the calculated percentiles. Since different 

modes have different behavioral ranges, mode-specific thresholds are used. 
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Distances: Threshold-Based Labeling 

Distance between vehicles is discretized using fixed predefined thresholds, based on the system’s design 

constraints rather than distributional properties. In the platooning context, the nominal target distance between 

vehicles is 14 meters. Based on acceptable deviations, we define the following distance categories: 

• critical_low (distance < 12.0 m) – critically short inter-vehicle distance 

• low (12.0 m ≤ distance < 13.5 m) – short but acceptable distance 

• optimal (13.5 m ≤ distance < 14.5 m) – ideal distance for platooning 

• high (14.5 m ≤ distance ≤ 16.0 m) – slightly extended but still safe 

• critical_high (distance > 16.0 m) – overly large inter-vehicle separation 

This discretization captures meaningful deviations from the expected safe inter-vehicle distance and supports 

the detection of abnormal or unstable formations. 

Mode-Specific Boundaries 

While distance discretization uses fixed thresholds, acceleration and speed labeling is mode dependent. Each 

operational mode has its own statistical characteristics, which influence the percentile values. To ensure 

consistency, the boundaries used for discretization are: 

• Automatically computed during preprocessing 

• Stored per mode in a reference dictionary 

• Used uniformly across all vehicles in each trace 

This guarantees that the symbolic interpretation of high speed or medium acceleration, for example, is 

consistent with the mode's expected dynamics. After discretization, each time step of each vehicle's trace is 

represented as a symbolic tuple, and an example of this symbolic trace mapping is reported in Table 1.  

Table 1:  Example of symbolic trace after discretization of acceleration, speed, and inter-vehicle distance. 

Time Car ID Acceleration Speed Distance to Preceding Vehicle 

0.0 CAR_X medium low nominal 

0.1 CAR_X high medium nominal 

0.2 CAR_X extreme_high high too_close 

… … … … … 
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5.3 Formal Model Generation 

This step generates a formal model by using the symbolic representations of the vehicular traces obtained in 

the previous discretization phase. For each vehicle involved in the platoon, the acceleration, speed, and distance 

variables are mapped into symbolic labels. These labels are then translated into CCS processes, representing 

the behavior of each vehicle over time. 

The CCS model is defined over a finite set of symbolic actions, one for each discretized variable at each time 

point. Each process represents the behavior of a single vehicle, encoded as a sequence of synchronized or 

unsynchronized actions. 

Symbolic Trace Encoding 

Once the operational mode is detected and discretization bounds are applied, each row of the numerical trace 

is mapped to a symbolic triple of the form: 

[label_acceleration].[label_speed].[label_distance] 

where each label corresponds to the symbolic category assigned to the respective value. An example is shown 

in Table 2, representing a symbolic trace for one vehicle over three-time steps. 

Table 2: Example of a discretized symbolic trace for a single vehicle. 

Time Acceleration Speed Distance to Preceding Vehicle 

t0 medium low optimal 

t1 high medium low 

t2 extreme_high high critical_low 

 

Each row is translated into a CCS process step. The resulting process captures the step-by-step behavior of the 

vehicle, representing its acceleration, speed, and distance as a sequence of symbolic actions. 

A separate CCS process is constructed for each vehicle. The process is defined as a chain of states, one per 

time instant. Each state executes a compound action (concatenation of labels), and transitions to the next 

process in the sequence. 

Let us consider vehicle CAR1, with its symbolic trace shown in Table 2. In the following we report the 

corresponding CCS specification. 
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proc CAR1_T0 = acc_medium.speed_low.dist_optimal.CAR1_T1 

proc CAR1_T1 = acc_high.speed_medium.dist_low.CAR1_T2 

proc CAR1_T2 = acc_extreme_high.speed_high.dist_critical_low.nil 

This process models the complete evolution of the vehicle from start to termination, based solely on its 

behavior in the trace. 

Synchronization of Cooperative Vehicles 

In cooperative settings such as platooning, vehicles operate in coordination. To model such behavior, we 

introduce a synchronization mechanism using dedicated CCS actions (sink, go). These actions are used to align 

the execution of different vehicle processes at each simulation time step. 

To implement synchronization: 

• Each vehicle process emits a synchronization action (sinkX, goX) before progressing. 

• An auxiliary process SINK coordinates all sink/go actions in order and loops infinitely. 

• A top-level process ALL puts all vehicle processes in parallel and hides synchronization actions. 

Example: 

proc SINK = 'sink0.'sink1.'sink2.'go0.'go1.'go2.SINK 

proc ALL = (CAR3_T0 | CAR4_T0 | CAR5_T0 | SINK) \ {sink0, sink1, sink2, go0, go1, 

go2} 

This structure ensures that vehicles advance in lock-step, reflecting real-time coordination as in the simulated 

platoon. The generated CCS models can now be used for formal verification. Properties describing safe 

distances, behavioral regularities, or synchronization invariants can be expressed in modal mu-calculus and 

checked against the model. This modeling approach enables a full pipeline from raw simulation data to 

verifiable formal specifications. 

5.4 Property Specification 

Cooperative vehicular systems such as platooning rely on strict coordination and safe distance keeping between 

vehicles. Given the high degree of automation involved, ensuring that the system adheres to behavioral 

constraints is essential, particularly in the presence of faults or attacks.  

Compared to black-box machine learning approaches, the use of explicit symbolic properties allows for 

interpretable diagnostics and verifiable safety guarantees. By inspecting whether each property holds over the 
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system traces, engineers can identify precise points of failure, explain them in domain-specific terms, and 

define corrective measures that are formally justified. 

However, raw numeric traces alone are often difficult to interpret due to signal noise and temporal variability. 

To overcome this, we apply a symbolic discretization process to map continuous variables — such as 

acceleration, speed, and inter-vehicular distance — into qualitative labels. This abstraction enables clearer 

analysis and supports the definition of properties over symbolic traces that highlight behaviorally meaningful 

patterns. In this way, symbolic modeling acts as a bridge between low-level data and high-level reasoning, 

enabling both formal verification and practical anomaly detection. 

To better understand when and how such violations can occur, we analyze the evolution of key behavioral 

variables — acceleration, speed, and inter-vehicular distance — using both raw data and their symbolic 

(discretized) counterparts. 

 

Figure 5: Acceleration profiles of the platoon under an example attack. 

Errore. L'origine riferimento non è stata trovata. shows the acceleration profile of all vehicles in a scenario a

ffected by an example attack. Around timestamp 60 seconds, Car1 exhibits an abnormal drop in acceleration, 

while the leader vehicle maintains a stable behavior. This divergence is indicative of an unintended or 

malicious event. Such anomalies motivate the definition of high-level properties that can be used to detect, 

explain, or prevent undesired behaviors. 

From the analysis of both normal and attack scenarios, we derive a set of relevant properties. These properties 

are described informally in natural language and reflect the key safety and coordination rules that the system 

should follow. Errore. L'origine riferimento non è stata trovata. shows the derived properties. 
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Table 3: Set of symbolic properties for safety derived from trace analysis. 

Property ID Description 

P1 – Distance Violation 
A vehicle should not remain in a critical low distance state for more 

than five consecutive time steps. 

P2 – Acceleration Misalignment 
If a follower vehicle changes its acceleration and the leader remains 

stable, this must not cause the distance to become critical low. 

P3 – Consistent Speed Transitions 
Transitions from high to low speed must be followed by a 

corresponding reduction in acceleration. 

P4 – Synchronous Behavior 

All vehicles in the platoon should undergo synchronous or 

coordinated changes in acceleration under normal operating 

conditions. 

P5 – Anomaly Detection 

A sudden and isolated change in acceleration of a follower vehicle, 

not justified by traffic or leader behavior, must be flagged as 

potentially unsafe. 

 

For instance, in one of the analyzed attack traces, Car1 abruptly changes its acceleration at timestamp 60, 

while the leader remains in a steady state. This causes the distance to shrink dangerously, violating Property 

P2 – Acceleration Misalignment. This concrete example shows how symbolic representations help detect 

subtle coordination failures before they escalate into safety hazards.  

These properties capture both invariant requirements (e.g., P1) and causal dependencies (e.g., P2 and P5) 

observed in the system's behavior. While we express them in informal terms, they are grounded in the symbolic 

traces derived from real simulations and serve as the basis for further formal verification and anomaly detection 

tasks. These properties are designed to be generic and data-driven: they apply to any discretized vehicular trace 

and can be used both for validation during model checking and as diagnostic rules during trace inspection.  In 

particular, these properties could also be embedded into runtime monitors, enabling automatic validation of 

vehicle behavior during simulations or live operations. Their symbolic structure ensures that the conditions 

they capture are both interpretable and enforceable, contributing to the transparency, reliability, and 

trustworthiness of cooperative driving systems. 

We resort to the Concurrency Workbench of  New Century (CWB-NC) [Clev96] formal verification 

environment.  
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5.5 Explainability 

The proposed methodology enhances explainability by transforming raw numerical traces into symbolic 

sequences. Each continuous feature — acceleration, speed, and inter-vehicular distance — is mapped to a finite 

set of semantically meaningful labels (e.g., critical_low, optimal, extreme_high) using either percentile-based 

discretization or rule-driven thresholds. This transformation bridges the gap between low-level sensor data and 

high-level reasoning, enabling domain experts to interpret vehicle behavior without inspecting raw numeric 

logs. Compared to black-box machine learning approaches, this symbolic abstraction provides a transparent 

and interpretable representation of system dynamics. Abnormal behavior patterns — such as sudden changes 

in acceleration or prolonged critical distances — can be detected and explained in human-readable terms, 

supporting both offline analysis and operational monitoring. 

Moreover, behavioral constraints can be formalized directly over symbolic labels, using either informal rules 

or temporal logics such as μ-calculus. This provides several advantages: 

• Traceability: property violations can be precisely located in the trace and linked to concrete symbolic 

events. 

• Debugging and validation: engineers can analyze transitions over time (e.g., a change from medium 

to extreme_low acceleration) to understand deviations from nominal behavior. 

• Property specification: formulating behavioral properties is facilitated, as symbolic labels provide a 

meaningful vocabulary for expressing conditions (e.g., “a vehicle should not remain in critical_low 

distance for more than five steps”). 

5.6 On-line test generation 

In addition, the symbolic representation enables automatic runtime monitoring. Rule-based monitors can 

operate over symbolic sequences and detect potential violations of coordination or safety constraints in real 

time. For example, a simple automaton could trigger a warning when a follower vehicle changes acceleration 

while the leader remains stable and the distance drops to critical_low. Finally, this framework is compatible 

with hybrid approaches. Statistical anomaly detectors or learning-based classifiers can operate in tandem with 

symbolic rules. For instance, clusters of anomalous behavior identified by machine learning can be mapped 

back to symbolic traces for interpretation, validation, and formal verification. 

By enabling interpretable diagnostics, trace-based reasoning, and formally verifiable properties, our method 

serves as a foundational tool for ensuring the safety and trustworthiness of cooperative vehicular systems. 
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6 Stochastic model checking for analysis on critical traces 

The approach based on statistical model checking [Legacy10] uses the formalism of timed automata to 

model the platoon. We use the framework UPPAAL SMC [Behr04]. 

A timed automaton consists of a set of states and transitions, and real-valued variables for measuring time 

between transitions, named clocks. The general form of a transition consists of a guard, a synchronization 

and an assignment to clocks and variables.  States are also named locations. Invariants can be added to 

locations to specify timing constraints on leaving the locations. The behavior of the automaton evolves 

from the initial location. One of the main advantages of using statistical model checking is that we can 

study the behavior of the system under a wide range of parameters. For instance, we can assume the 

acceleration time of a vehicle being drawn from a uniform distribution with lower and upper bound of 5 

and 10, respectively. Such an approach allows us to test the probability of a certain property being true in 

case – generally speaking – the accelation of the car is in the continuous range from 5 to 10.  

Consider the simple system, composed by a car and a driving pattern. The system moves according to a 

given driving scenario and imposes the acceleration on the car.  

 

Figure 6: A simple car system 

The car is represented by the automaton Car. The acceleration imposed on Car is represented by the 

automaton Driver. The acceleration is defined by a global variable a, set by the Driver.  The clock 

variable t defines interleaving time between transitions.  

The automaton Car consists of a single location DYNAMICS. The car's speed and position are modeled 

by two clocks x and v, which are used to model the physics via the Lagrangian derivative notation. In 

particular, the state has an invariant that consists of the conjunction of the following two formulae:  the 

acceleration is always equal to the derivative of the velocity; and the velocity is always equal to the 

derivative of the position.  

The automaton Driver consists of three locations (INIT, ACCEL and DECEL).  The driver's behavior is 

modeled as follows.  INIT is the initial location. The first transition is enabled and set the acceleration to 
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a = 1 m/sec2.  The location INIT is marked with a C that stands for committed, time is not allowed to pass 

when a process is in a committed location. It forces the automaton to transition to state ACCEL and assigns 

a:=1 immediately. 

Then, the invariant (t<=6) assigned to location ACCEL and the guard (t>=3) assigned to the transition 

exiting such location, guarantee that the transition between ACCEL and DECEL is executed in the time 

range [3,6]. The execution of the transition assigns a new value equal to -1 m/sec2  to the global variable 

a (a:=-1) and the clock t is reset to 0.  A similar behavior is exhibited when the system is in location 

DECEL (state invariant (t<=5); and guard (t>=2.5)). The Driver alternates an acceleration period of 

length T_A in the range [3,6] with a = 1 m/sec2and a deceleration period of length T_D in the range 

[2.5,5] with a = -1 m/sec2.  

During the evolution of the systems, whenever a transition is executed, all clocks are evaluated. In 

particular, all clocks are updated, and the car's automaton updates the velocity and position of the car.  

6.1 Modeling a platoon 

Let us consider a reduced version of the platoon with the leader only 3 follower cars, we model the system 

using 7 templates of automata, as shown in Figure 7. 

 

Figure 7: Components of a platoon. 

Templates of automata 

Car’s physics, sensors and attacks, this template implements the physics and the attacks on a single car. We 

have 4 instances of this template – one for the leader and three for the followers. Shown in Figure 8. 

Leader’s driver, this template implements the driving behavior of the leader car.  
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CACC controller, this template implements the CACC controller, there are 3 instances of this template – one 

for each follower.  

CACC clock, this automaton ties together the CACC instances. 

Network uplink and downlink, these templates are used to implement the network delays between the CACC 

controllers and the platoon.  

 

Modeling attacks. The system model is extended with the injection of attacks by adding the effects of the 

attacks on the behaviour of the system. We consider attacks that add spurious signals to data sent by the car to 

other vehicles (V2V platoon) or to controller at the edge (V2E platoon). Attacks that affect data sent back by 

the controller to cars can be modeled in a similar way.  

Clocks modeling data that have been altered by an attack are used to model attacks in the platoon. There are 

six clocks for each car: 

a_p[i], v_p[i], x_p[i]  that  represent the real physical quantities; and  

a[i], v[i], x[i] that are used to model attacks in the platoon. They represent the value actually sent by 

the car to the other vehicles or to the remote controller. 

The attack is characterized by a starting time and by an amplitude parameter.  Let attack_time  be the time 

at which the attack starts. 

The global variable A represents the data alteration attack with amplitude A. 

Let N_CARS be the number of cars in the platoon. A vector crashed[N_CARS] is used, whose i-th element is 

set to true after the i-th car has either rear-ended or has been rear-ended.  

Let us consider the case of a low-frequency sinusoidal attack of 1 Hertz  of frequency and of amplitude A in 

[-0.1, +0.1], applied to real acceleration value a(t) --- the coefficient  2/10 is the frequency expressed in 

radians per second.  In the example, we assume the acceleration, velocity and position values are modified 

coherently, assuring that the relation x'=v, v'=a holds true. Additionally, for the velocity, a small bias 

coefficient  (5/)A  is introduced. The problem is made interesting by the signal's construction, which is 

designed to be difficult for an external observer to detect. 

The Car model is shown in Figure 8.  There are four states: 

- WAIT. Location WAIT represents the car waiting for its time to start moving after start_time 

seconds.  STOP ALL LOCAL CLOCKS is the state invariant in which all clocks modeling the physics 

are stopped by imposing their prime derivatives to zero, that is x'==0 && v'==0 && etc. 



 

Pag. 24 

 

- DYNAMICS. Location DYNAMICS models the time evolution of the vehicle given the input signal 

desired acceleration u.  NOMINAL DYNAMICS is the state invariant that models the physics of the 

running car.  Being in location DYNAMICS, if attack_time=+infinity then no attack takes place 

as the guard t_sim>=attack_time of the transition from location DYNAMICS to 

DYNAMICS_ATTACK is always false. When an attack starts, such transition updates clocks 

according to the effects of the attack on velocity and position. 

- DYNAMICS_ATTACK.  Location DYNAMICS_ATTACK is the same as the former but with the attack. 

ATTACK DYNAMICS is the state invariant in which the clock rate of attacked values are altered 

according to the attack.  

- CRASH. The location CRASH represents a crash with another vehicle STOP ALL LOCAL CLOCKS 

is the state invariant and it is the same as the location WAIT. 

More details are reported in [Bern25].  

 

 

Figure 8: Car model in presence of possible attacks  
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6.2 Modeling system’s properties 

Using UPPAAL SMC we can compute, for example, the probability of an attack having a significant effect on 

the distance between two adjacent cars within the first 10 seconds. This might be useful in understanding how 

much time a threat detector might have to properly detect the threat and handle it. 

We formalized the statement with the following formula, where the attack starts at 

30s, and the property must hold for any pair of consecutive (adjacent) vehicles: 

𝑃 (∀𝑡: 30s ≤  𝑡  ≤  40s    ⇒  ∀𝑖 𝜀𝑖  <  0.15)  

where 𝜀𝑖 represents the difference between the desired distance of 11 meters and the actual distance between 

vehicle i and vehicle i-1 , 𝑡 is the simulation time and imply operator ⇒ is used to check the condition ∀𝑖 𝜀𝑖  <

 0.15 within the time interval 𝑡  ∈ [30,  40] . 

In the UPPAAL query language, it becomes the following, where the desired distance is 11 meters and  4 

meters is the length of a vehicle: 

Pr[t_sim <= 40] ([] t_sim >= 30 imply 

    forall(i : int[1, 3]) fabs(((x_p[i-1] - x_p[i] - 4) – 11) /11) < 0.15) 

where: 

• The Pr[clock <= T](expr) instructs the UPPAAL query engine to compute the probability of 

expr being true while the condition on a clock clock holds true 

• The [] keyword says the property holds for the entire considered duration 

• The imply keyword implements the material conditional ⇒ 

• The forall(values) expr(i) construct checks the expr(i) for all i in the list values 

• The fabs(x) function computes the absolute value of a floating-point number  

We made the simulation parametric in the attack amplitude A and we varied such parameter between –0.1 and 

0.1 with step 0.002. We ran the query setting a confidence interval of 95%. The results are shown in the graph 

in Figure 9. 

 

Figure 9: Probability of error distance  𝜀𝑖   <  0.15 within the time interval 𝑡  ∈ [30,  40] for any vehicle 
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For very small values of A the probability is 0, meaning that the attack has no effect in the short period; whereas 

larger values make the system more prone to leave the safe zone and can be easily detected.  

7 Roadmap for future work 

This deliverable reports on the methodology defined in WP3 to build formal models from behavioral traces 

and  the identification of properties to detect attacks in the platoon. In the next tasks of WP3, the methodology 

will be validated using scenarios on simple cases; and successively, the methodology will be validated on the 

platooning use case.  
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