

FORESEEN Project

PRIN 2022 PNRR

FORmal mEthodS for attack dEtEction in autonomous driviNg systems

https://forseen.dii.unipi.it

Cinzia Bernadeschi, Giuseppe Lettieri, **Dario Pagani**

Dep. of Information Engineering, University of Pisa

Adriano Fagiolini

Dep. of Engineering, University of Palermo

Christian Quadri

Computer Science Dep., University of Milan

Antonella Santone, Vittoria Nardone Dep. of Medicine and Health Sciences Vincenzo Tiberio, University of Molise

Severity of attacks in a vehicle platoon by model-based simulation

Introduction

The goals of our work:

- 1. Enhancing security of *connected autonomous vehicles* (CAV) by developing run-time local monitors for attack detection: the case of vehicle platoon
- 2. Model-based design security analysis
- 3. Traces analyses for anomaly detection
- 4. Model checking & abstract interpretation to identify patterns suggesting the possibility of an impending attack

Motivations:

Vulnerability in vehicle ecosystems GPS, OBD, CAN etc... etc...

Introduction - Project's goal

Vehicle platoon

The platoon's main objective is to keep an inter-vehicular distance D=11 meters between each pair of cars.

We study two kind of configurations:

- 1. Vehicle-to-edge
- 2. Vehicle-to-vehicle

The *Cooperative Adaptive Cruise Control* (CACC) is used to control the platoon

Vehicle platoon – V2V

The V2V counterpart is similar but there's a pair of edge of each pair of cars (i, i - 1) and (i, 0).

The IEEE 802.11p protocol is implemented as the network medium.

[1] was used to simulate the rate of packet drops in function of distance, vehicle distance and network traffic

Vehicle status

VEHICLE TO VEHICLE

[1] M. Sepulcre, M. Gonzalez-Martín, J. Gozalvez, R. Molina-Masegosa and B. Coll-Perales, "Analytical Models of the Performance of IEEE 802.11p Vehicle to Vehicle Communications," in *IEEE Transactions on Vehicular Technology*, vol. 71, no. 1, pp. 713-724, Jan. 2022

Co-simulation

We have the following FMUs:

Name	Language		
Car's physics	MATLAB		
[V2E] Network medium + CACC Controller	Python		
[V2V] Network Medium	C++		
[V2V] CACC Controller	С		

INTO-CPS is used as the COE

http://into-cps.org

How the FMUs are connected in the V2V scenario

Attack injection

We study two kinds of data alteration attacks:

- **1)Actuator alternation** (i.e. on the value of desired acceleration u sent by the CACC to the car's physics)
- **2) Physical values alteration** (i.e. on the x, v, a values sent by vehicle to the edge/other vehicles)

They're implemented by **adding a switch** in the car's physics' FMU

I-Cities 2025 September 18, 2025

Actuator alteration

$$\tilde{u}_1 = u_1 + A$$

Attack on the actuator with a certain parameter A

$$\tilde{u}_1 = (1+A) \cdot u_1$$

Physical values alteration

$$\tilde{a}(t) = a(t) + A\sin(2\pi ft)$$

$$\tilde{v}(t) = v(t_0) + \int_{t_0}^t \tilde{a}(\tau)d\tau$$

$$\tilde{x}(t) = x(t_0) + \int_{t_0}^t \tilde{v}(\tau)d\tau$$

Ranges under study

Examples of possible values of A: ± 0.08 , ± 0.04 , ± 0.5 , etc...

Assumptions

- The CACC control law is assumed to be the same between the two scenario
- Packet latency are drawn from an exponential distribution
- V2V
 - Simulation of highly congested radio channel
- V2E
 - Reliable link (no packet loss)
 - RTT within 30 ms

Some results & Conclusions

We tested many parameter combinations.

- Attacks data-alteration are most dangerous
- Attacks on actuators mainly result in a reduced inter-vehicular distance.

 Δ wrt nominal gap at $t=120\mathrm{s}$ over A

Example of possible data aggregation

These figures are relative to V2E. (similar to V2V)

P1: Physical values alteration attacks

P2: actuator alteration attacks

Label class	No attack		Attack on car 1 - P1			
ОК	100.00%	33.33%	33.33%	50.00%	33.33%	75.00%
TOO CLOSE	0.00%	0.00%	0.00%	50.00%	0.00%	25.00%
COLLISION	0.00%	66.67%	66.67%	0.00%	66.67%	0.00%
# TRACES	96	576	288	384	288	384

I-Cities 2025 September 18, 2025 1

Further work

- More attacks
- Extract models of the cars' behaviors from the traces.
- Extract properties from the traces
- Generate online tests to check against attacks on the vehicle

I-Cities 2025 September 18, 2025

FIN Thank you for the attention

This work is part of the FORSEEN project

https://forseen.dii.unipi.it

P2022WYAEW – FORESEEN: FORmal mEthodS for attack dEtEction in autonomous driviNg systems

I-Cities 2025 September 18, 2025