

Ministero dell'Università e della Ricerca

8th EAI International Conference on Intelligent Transport Systems University of Pisa, Italy 5-6 December 2024

A Preliminary Approach To Verify Platoon Behaviour Using Execution Traces and Model Checking

<u>Simona Correra</u>, Valeria Sorgente, Giulia Varriano, Vittoria Nardone, Francesco Mercaldo, and Antonella Santone

University of Molise, Campobasso, Italy

Università di Pisa

FORESEEN Project

PRIN PNRR 2022

Ministero dell'Università e della Ricerca

NOWADAYS

rapid growth of autonomous vehicle technology

Ministero dell'Università della Ricerca

PLATOON

group of vehicles that travel together, based on wireless communication.

TWO PRIMARY ARCHITECTURES:

- centralized, leader or a server makes operational decisions,
- distributed, each vehicle autonomously deciding.

These systems require precise coordination and robust verification to ensure reliability under all conditions.

JNIVERSITÀ

Ministero dell'Università e della Ricerca

Cooperative Adaptive Cruise Control

It uses vehicle-to-vehicle (V2X) communication and onboard sensors to dynamically adjust a vehicle's speed and maintain safe distances.

It can reduce some of the most common causes of accidents:

- inadvertent braking,
- rear-end collisions
- driver error.

Ministero dell'Università e della Ricerca

Università di Pisa

Running these inputs through a model checker, which determines if the properties hold or provides counterexamples if they don't.

Proposed Workflow

1. DATA COLLECTION

3. DISCRETIZATION

5. PROPERTY VERIFICATION

8,899 samples of acceleration and velocity of four vehicles

Case Study DISCRETIZATION predefined intervals

Case Study DISCRETIZATION slope analysis

TWO PHASES:

- 1. Augmented Dickey-Fuller test to evaluate if the sample in a window were constant
- 2. Assessement of the slope to define if there were an increasing or decreasing.

0.2 -

0.0

1.0

0.8

0.6

0.4

several widths (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550)

Ministero dell'Università e della Ricerca

Formal Models Creation

two transformation functions:

fl, to model the sequential behavior of individual vehicles.

$$p_{ij} \stackrel{\text{def}}{=} (Acceleration \parallel Velocity); p_i$$

 f2, to synchronize multiple vehicles, mimicking their interactions during coordinated maneuvers.

 $p_{00} \stackrel{\text{def}}{=} (increasingAcc0.DONE \| increasingVel0.DONE); (\overline{synk_0.go_0.p_{01}})$

Università

j+1

Property Verification

Acceleration propagation

 $\varphi_1 = \mu X. \langle increasingAcc0 \rangle \varphi_{1_1} \lor \langle -increasingAcc0 \rangle X$ $\varphi_{1_1} = \mu X. \langle increasingAcc2 \rangle \varphi_{1_2} \lor \langle -increasingAcc2 \rangle X$ $\varphi_{12} = \mu X. \langle increasingAcc3 \rangle \varphi_{13} \lor \langle -increasingAcc3 \rangle X$ $\varphi_{13} = \mu X. \langle increasingAcc4 \rangle tt \lor \langle -increasingAcc4 \rangle X$

Deceleration propagation

 $\varphi_2 = \mu X. \langle decreasingAcce0 \rangle \varphi_{2_1} \lor \langle -decreasingAcce0 \rangle X$ $\varphi_{21} = \mu X. \langle decreasingAcce2 \rangle \varphi_{22} \lor \langle -decreasingAcce2 \rangle X$ $\varphi_{22} = \mu X. \langle decreasingAcce3 \rangle \varphi_{23} \lor \langle -decreasingAcce3 \rangle X$

 $\varphi_{2_3} = \mu X. \langle decreasingAcce4 \rangle tt \lor \langle -decreasingAcce4 \rangle X$

Ministero dell'Università e della Ricerca

Preliminary Results

for all several widths

Ministero lell'Università della Ricerca

Challenges and Limitations

- State explosion: as the number of vehicles or parameters increases, the complexity of verification grows exponentially.
- Loss of detail: discretization simplifies data but might overlook subtle anomalies.
- Simulated data: real-world factors like road conditions or driver interactions are not fully captured.

Jniversità PISA

Ministero dell'Università e della Ricerca

Future Work

- Integrating real-world datasets into our models to improve accuracy.
- Extending the framework to include more complex platoon behaviors and scenarios.
- Testing the system against adversarial conditions to verify robustness against attacks.

Ministero dell'Università e della Ricerca

8th EAI International Conference on Intelligent Transport Systems University of Pisa, Italy 5-6 December 2024

Thank you

<u>Simona Correra</u>

s.correra@studenti.unimol.it

University of Molise, Campobasso, Italy

