
Deliverable D3.1: Report on how to include
and configure attacks in co-simulation

architectures

FORESEEN

FORESEEN
FORmal mEthodS for attack dEtEction in autonomous driviNg systems

PRIN 2022 PNRR

Project number: P2022WYAEW
CUP: I53D23006130001

Deliverable D3.1: Report on how to include and configure attacks in co-
simulation architectures

Project Start Date: 30/11/2023 Duration: 24 months

Coordinator: University of Pisa

 Deliverable
 No D3.1

WP No: WP2

WP Leader: RU-MI

 Tasks: T2.3 - Leader: RU-MI T2.4 - Leader: RU-PI

Due date: M9-12

Delivery date: November 30, 2024

Authors: RU-MI, RU-PA, RU-PI, RU-MOL

Dissemination Level:

PU Public X

PP Restricted to other program participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

Pag. 2

Contents
1. INTRODUCTION...5

2. MODELLING ATTACK EFFECTS IN THE SYSTEM..5

2.1 SENSOR ATTACKS..6

2.2 ACTUATOR ATTACKS..6

3. EXTENSION OF THE MODELS TO IMPLEMENT ATTACK INJECTION..7

4. ATTACK FUNCTIONS...8

5. DSE CONFIGURATION..10

6. TESTING THE ATTACKS IN THE SYSTEM..11

7. ROADMAP FOR FUTURE WORK..14

8. BIBLIOGRAPHY..14

Pag. 3

List of Acronyms

CACC Cooperative Adaptive Cruise Control

CAN Controller Area Network

DSRC Dedicated Short-Range Communications

V2V Vehicle to Vehicle

V2N Vehicle to Network

Pag. 4

1. Introduction
This deliverable shows the extension of the model of vehicles (defined in WP2 – deliverable D2.1)
to implement attack injection on the Platoon, starting from attack scenarios (defined in WP1,
deliverable D1.3). Attack injection is implemented by modeling the possibility of activating the
attack upon the verification of certain conditions (e.g., the starting time) and including the effect of
the attack in the model of the vehicle.

Moreover, this deliverable will provide information regarding the data generation and collection for
successive analysis.

2. Modelling attack effects in the system

As it has been mentioned in Deliverable D1.3 “Report on attack scenarios and their impact on the
sensory and actuation systems”, we decided to consider two types of attacks, namely internal and
external. Each attack type can have an impact on two different components of the vehicle, the
actuator and the sensors. The “class” of attacks that we decided to take into account are data
alteration attacks.

To properly understand our decision making process during the attack injection phase, we need to
recall the multi-model’s structure in terms of input and output connections. The set of FMUs
present in the Vehicle to Edge Network (V2E) configuration are:

 Leader FMU: it will send its position, speed and acceleration to the network; it doesn’t have
any input.

 Follower Car’s Dynamics FMU: it will send its position, speed and acceleration to the
network and receives the desired acceleration from the network.

 V2E Network FMU: this FMU will take every set of position, speed and acceleration values
from the leader and from each follower car. Within the network FMU there is the control
algorithm, thus it will calculate the desired acceleration for each follower car and simply
output it to the vehicles.

The set of FMUs present in the Vehicle to Vehicle (V2V) configuration are:

 Leader FMU: it will send its position, speed and acceleration to the network; it doesn’t have
any input.

 CACC algorithm FMU : one instance of such FMU per each vehicle X.
The CACC FMU associated to vehicle X, will require

o the set of acceleration, speed and position of vehicle X,
o the set of acceleration, speed and position of the preceding vehicle of X and
o the set of acceleration, speed and position of the Leader

This FMU will give as output
o the desired acceleration for vehicle X.

 Follower Car’s Dynamics FMU: it will send its position, speed and acceleration to the
network and receives the desired acceleration from the network.

Pag. 5

 V2V Network FMU: this FMU will simply interconnect the position, speed and acceleration
sent by every car X to CACC FMU of vehicles, accordingly.

In both cases, the Follower Car’s Dynamics FMU will take the acceleration from a component and
output to somewhere else the data read from its sensors.

For what concerns the effects of the attack, we could distinguish just two classes: Sensor attacks
and Actuator attacks.

 In fact, in case of a Sensor attack between vehicle j and j+1, it doesn’t matter if the data alteration
is done before outputting the data from vehicle j (Internal attack), inside the network (external
attack), or after the input in vehicle j+1’s CACC (Internal attack). The effect will be the same in
any case, for this reason we simply decided to model it just once. For simplicity, it is modeled
before outputting the values of the position, speed and acceleration.

Same goes for the Actuator attacks, which instead are being modeled after the input of the desired
acceleration, taken from the vehicle’s CACC or from the MEC.

An attack can be dormient for some simulated time, and then it starts. The start time is defined in a
parameter called attack_time.

In the following subsections we will take a look at the different type of attacks per each class.

2.1 Sensor Attacks

We decided to model three different type of attacks to sensors:

 Data alteration with a low frequency Sine function
 Data alteration with a high frequency Sine function
 Data alteration with a combination of both high and low frequency Sine functions.

In order to be able to model different attack effects, it is possible to modify the frequency and
amplitude of the sine functions, in addition to the start time of the attack. This can be done by
simply adding a few parameters to the Follower Car’s Dynamics FMU.

In order to make the attack as subtle as possible and harder to detect, we decided to “modify in a
coherent way every data sent from the vehicle”. The data alteration following one of the three
possibilities is done to the acceleration value to be sent outside, then the resulting value is being
integrated accordingly, in order to obtain a coherent modification of the speed. Then, the new speed
value is integrated again to obtain the position. We have the tuple (acc, speed, position).

The Sensor type of attacks can be done both on a generic vehicle in the platoon but also on the
leader. The Actuator type of attacks can only be done to the generic vehicle, but not to the leader.
Both attacks require the specification of the time at which the attack starts.

2.2 Actuator Attacks
Here the idea is to modify the value of the desired acceleration taken by the control algorithm
before providing it to the actuator. The alteration can be the following:

Pag. 6

 altered_value = desired_acceleration * scale
 altered_value = desired_acceleration + constant_factor

Once again, the FMU will require new parameters for the scale or the constant_factor, as well as the
time at which the attack starts.

3. Extension of the models to implement attack injection

Only one attack is activated at a time. The injection of the attack is modeled with a parameter of the
co-simulation named attacked.

The Lead car and the followers are modeled in Simulink [MathWork]. Simulink allows to design
models using the graphical tool by adding and interconnecting blocks, which can be input, output,
Matlab function and many other types of blocks.

Figure 1 shows the Simulink model of the Leader, with attacks. The Lead car model is at the bottom
on the left side of the figure; the attacks model is at the top on the right side of the figure.

Figure 1: Simulink model of the Leader with attacks

Similarly, Figure 2 shows the Simulink model of the follower (generic car) with attacks. The
generic car model is at the bottom on the left side of the figure, the attack models are at the top on
the right side of the figure.

Pag. 7

Figure 2: Simulink model of the follower vehicle with attacks

4. Attack functions

The following function (attack_function) is implemented to inject attacks for both the Leader and
the follower vehicle [Ber2020].

function [position_out, speed_out, acc_out, attacked] =
attack_function(position_in, speed_in, acc_in, position_low_freq,
speed_low_freq, acc_low_freq, position_high_freq, speed_high_freq,
acc_high_freq, ... position_both_freq, speed_both_freq, acc_both_freq,
attack, attack_time, clock)

 position_out = position_in;

 speed_out = speed_in;

 acc_out = acc_in;

 attacked = 0;

 if attack_time <= clock

Pag. 8

 if attack != 0

 switch attack

case 1

 % low frequency sine

 position_out = position_low_freq;

 speed_out = speed_low_freq;

 acc_out = acc_low_freq;

 attacked = 1;

 case 2

 % high frequency sine

 position_out = position_high_freq;

 speed_out = speed_high_freq;

 acc_out = acc_high_freq;

 attacked = 1;

 case 3

 %both

 position_out = position_both_freq;

 speed_out = speed_both_freq;

 acc_out = acc_both_freq;

 attacked = 1;

 %case 4 and 5 are on the actuator

 end

 end

 end

end

Pag. 9

The following function (actuator_attack) is implemented to inject attacks for follower vehicles.

function acc_des = actuator_attack(acc_des_in, attack, attack_amplitude,
attack_time, clock)

 acc_des = acc_des_in;

 if attack_time <= clock

 switch attack

 case 4

 acc_des = acc_des_in * (1 + attack_amplitude);

 case 5

 acc_des = acc_des_in + attack_amplitude;
 end
 end
end

5. DSE configuration

Here is the json of the configuration file used by the Design Space Exploration (DSE) tool
[Gam2017] to run a batch of co-simulations.

{
 "algorithm": {
 "type": "exhaustive"
 },
 "objectiveConstraints": [],
 "objectiveDefinitions": {
 "externalScripts": {},
 "internalFunctions": {}
 },
 "parameterConstraints": [],
 "parameters": {
 "{Leader}.LeaderInstance.initial_position": 0,
 "{Leader}.LeaderInstance.initial_velocity": 0,
 "{Leader}.LeaderInstance.operational_mode": [0,1, 2],
 "{Network}.NetworkInstance.platoon_0_0_length": 4,
 "{Network}.NetworkInstance.platoon_0_1_length": 4,

Pag. 10

 "{Network}.NetworkInstance.platoon_0_2_length": 4,
 "{Network}.NetworkInstance.platoon_size": 10,
 "{Network}.NetworkInstance.platoon_0_3_length": 4,
 "{Network}.NetworkInstance.platoon_0_4_length": 4,
 "{Network}.NetworkInstance.platoon_0_5_length": 4,
 "{Network}.NetworkInstance.platoon_0_6_length": 4,
 "{Network}.NetworkInstance.platoon_0_7_length": 4,
 "{Network}.NetworkInstance.platoon_0_8_length": 4,
 "{Network}.NetworkInstance.platoon_0_9_length": 4,
 "{Network}.NetworkInstance.network_downlink_delay": [0,0.1],
 "{Network}.NetworkInstance.network_uplink_delay": [0,0.1],
 "{Car2}.CarInstance_2.initial_position": 0,
 "{Car2}.CarInstance_2.initial_velocity": 0,
 "{Car2}.CarInstance_2.vehicle_starting_time": 8,
 "{Car2}.CarInstance_2.attack": [0, 1,2,3,4,5],
 "{Car2}.CarInstance_2.attack_amplitude": 0.2,
 "{Car2}.CarInstance_2.attack_time": 30,
 "{Car2}.CarInstance_2.high_frequency": 172,
 "{Car2}.CarInstance_2.low_frequency": 0.1
 },
 "ranking": {
 "pareto": {}
 },
 "scenarios": []
}

6. Testing the attacks in the system
The testing phase is necessary, both to ensure that the attacks behave as expected and also to define
a set of interesting values to be used for the data gathering process. For example, a very low value
for the amplitude of the low frequency sine function on the sensor attack type will probably have
little to no impact on the system, thus making it not interesting, but also an excessive value will of
course cause harm, but also be very easily detectable.

Here we will provide a few images of the graphs obtained during said tuning and testing phase,
highlighting the effects of the attacks in the system.

Case 1. We introduce an attack where the Car2 outputs wrong data to the Edge; the type of
alteration is the low frequency sine function. Figure 3 shows the position of vehicles. Figure 4
shows the acceleration of the Leader and the acceleration of Car 2 (attacked).

Pag. 11

Figure 3: Graph of the position of the vehicles – case 1

Figure 4: Acceleration of the leader (nominal) and of Car2 (attacked) – case 1

Pag. 12

Case 2. We introduce an attack where the desired acceleration sent by the Edge to Car2 is wrong.
The type of alteration is a constant increase of the desired acceleration value. Figure 5 shows the
effects of an actuator attack. Figure 6 shows the value of the desired acceleration sent by the Edge
to Car2 which is modified by adding a constant value.

Figure 5: Graph of the position of the vehicles – case 2

Figure 6: Acceleration of the leader (nominal) and of Car2 (attacked) – case 2

Pag. 13

After Task 2.1: “Implementation and testing of CPS model”, an extensive simulation campaign has
been conducted by performing a Design Space Exploration to generate behavioural traces for
different nominal operational conditions of the platoon, Task T2.2: “Design Space Exploration and
trace generation”. Then in Task T2.3 “Implementation and testing of attacks (FMUs)”, the attacks
were implemented in the CPS architecture, attacking the critical points identified in Task 1.3.
Finally, in Task T2.4 “Design Space Exploration & trace with attacks generation” simulations were
conducted for the identified attack scenarios. Collected data are organised in .csv files, and are
available on the Foreseen machine of the FoReLab at RU-PI. Part of the data will also be uploaded
on the website of the project. The collected data will be used in next steps of the project to build
formal models of the CPS behaviour in absence and presence of attacks

7. Roadmap for future work

WP2 is the work package in charge of executing the co-simulation runs and collect data required for
the next step of the project. In particular, in the referenced period of the project, the FMI
architecture has been implemented to execute a validated campaign of co-simulation runs and a
dataset of traces with and without the attacks has been saved. The objective of WP3 will be to
formalize platoon behavior by transforming the execution traces into formal models that represent
both normal and malicious system dynamics. These models will account for complex interactions,
such as cascading effects of attacks and varying network conditions. Embedded detection
mechanisms will enhance the system's ability to identify recurring malicious patterns or anomalies.
Furthermore, the models will try to incorporate predictive capabilities to anticipate potential threats.

8. Bibliography

[MathWork] MathWorks. Simulink. url: https://it.mathworks.com/help/simulink/.

[Gam2017] Gamble, C., “DSE in the INTO-CPS Platform”. INTO-CPS Deliverable, Aarhus Univ.,
Denmark, Tech. Rep. D5.3e

[Ber2020] Bernardeschi C., Domenici A., Palmieri M. “Formalization and co-simulation of attacks
on cyber-physical systems,” Journal of Computer Virology and Hacking Techniques, 16, 2020

Pag. 14

https://it.mathworks.com/help/simulink/

	1. Introduction
	2. Modelling attack effects in the system
	2.1 Sensor Attacks
	2.2 Actuator Attacks
	3. Extension of the models to implement attack injection
	4. Attack functions
	5. DSE configuration
	6. Testing the attacks in the system
	7. Roadmap for future work
	8. Bibliography

