

UNIVERSITÀ DEGLI STUDI DI MILANO

FORESEEN

Platooning

Security Aspects of Intra/Inter-Vehicle Communications

FORESEEN

Technical meeting

Connets Lab

UNIVERSITÀ DEGLI STUDI DI MILANO

Cyber vulnerabilities in a vehicular ecosystem

Zeinab El-Rewini, Karthikeyan Sadatsharan, Daisy Flora Selvaraj, Siby Jose Plathottam, Prakash Ranganathan, Cybersecurity challenges in vehicular communications, Vehicular Communications, Volume 23, 2020, 100214, ISSN 2214-2096, https://doi.org/10.1016/j.vehcom.2019.100214.

UNIVERSITÀ DEGLI STUDI DI MILANO

The Autonomous Vehicular Sensing-Communication-Control framework

Zeinab El-Rewini, Karthikeyan Sadatsharan, Daisy Flora Selvaraj, Siby Jose Plathottam, Prakash Ranganathan, Cybersecurity challenges in vehicular communications, Vehicular Communications, Volume 23, 2020, 100214, ISSN 2214-2096, https://doi.org/10.1016/j.vehcom.2019.100214.

UNIVERSITÀ DEGLI STUDI DI MILANO

FORESEEN

Intra-Vehicular Communication Threats

Controller Area Network (CAN) Powertrain

Local Interconnect Network (LIN) Body control (instruments, door, light remote keyless...)

FlexRay (Safety & Chassis control)

Media Oriented System Transport (MOST) (infotainment)

Ethernet

Akib Anwar, Anika Anwar, Lama Moukahal, Mohammad Zulkernine, Security assessment of in-vehicle communication protocols, Vehicular Communications, Volume 44, 2023, 100639, ISSN 2214-2096, https://doi.org/10.1016/j.vehcom.2023.100639.

UNIVERSITÀ DEGLI STUDI DI MILANO

Intra-Vehicular Communication Threats (Via Infotainment & OBD port)

Attacks

- Masquerading: attacker masquerades as legitimate node
- Message spoofing: <u>illegitimate/inaccurate messages</u>
- Eavesdropping: unauthorized access to vehicular messages
- Injection: <u>fake messages injected into bus</u>
- Relay: resent valid frames to impede real-time functioning
- DoS
- Bus-off: specific for CAN bus protocol causing increment of ECU transmit error counter

UNIVERSITÀ DEGLI STUDI DI MILANO

Inter-vehicular Communication Threats

V2V

IEEE 802.11p + WAVE (Wireless Access in Vehicular Environment)

IEEE 1609.2 offers a security layer for connected vehicular environment

Platoon messages are "Basic Safety Message"

UNIVERSITÀ DEGLI STUDI DI MILANO

Inter-vehicular Communication Threats

- Illusion attack: false event created
- **Bogus information attack:** attacker generates fake messages to make other vehicles choose different path (e.g. Lane changing)
- Sybil attack: attacker declares itself as multiple nodes
- Timing attack: add some time delay on purpose (other vehicle believe info is timing)
- Impersonation attack
- Alteration/Replay attack
- Jamming
- DoS (DSRC & Cellular)

UNIVERSITÀ DEGLI STUDI DI MILANO

Attack	Property	Ease of attack	Detection probability	Attack	Property	Ease of attack	Detection probability
Eavesdropping	Confidentiality	High	Low	Bogus information	Integrity, Authentication	Moderate	Low-Driver, Moderate-System
GPS Spoofing	Authentication, Privacy	High	Low	Black hole	Availability,	Moderate	Moderate
Alteration/Replay	Integrity, Authentication	High	Low		Confidentiality, Integrity		
Magnetic	Privacy, Integrity, Availability, Real-time Constraint	High	Low-Driver, High-System	Man-in-the-middle	Confidentiality, Integrity, Authentication	Moderate	Moderate
Identity tracking	Location, Privacy	High	Low-at High Traffic Density	Injection	Integrity	Moderate	Moderate-Driver, High-System
Sybil	Authentication, Availability	High	Moderate	Blinding	Privacy, Integrity, Real-Time constraint	Moderate	High
Denial of service	Authentication,	High	High	Illusion	Authentication, Integrity	Law	Low-Driver/System
Timing	Availability, Real-time Constraint	High	High	Impersonation	Integrity, Authentication	Low	High

Table 4. Potential cyber attacks in V2X communications

J. Petit and S. E. Shladover, "Potential Cyberattacks on Automated Vehicles," in IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 546-556, April 2015, doi: 10.1109/TITS.2014.2342271.

Possible scenarios to investigate

- On-board attack: one or more vehicles are compromised and send wrong data to other platoon vehicles
 - $\circ~$ OBU is compromised
 - Communication is ok (V2V/V2N)
- V2V communication attack
 - Internal one or more vehicles are compromised and acts non-cooperatively (timing attack, relay,...)
 - External jamming/DoS from outside, other vehicles/RSU
- V2N communication attack
 - $\circ~$ Jamming/DoS at BS level
 - $\circ~$ DoS at Edge level
- Control Law attack ?? (gain values, target values)

